透過您的圖書館登入
IP:3.239.57.87
  • 學位論文

低溫脈衝電鍍製備法對銅奈米線的微結構和電性影響之研究

Microstructure and Electrical Property of Copper Nanowires Fabricated by Pulsed Electrodeposition at Low Temperature

指導教授 : 廖建能
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


由於銅金屬擁有良好的電導率,已經被廣泛應用在微米尺度電子元件中作為連結元件間的導線。此外,一維的銅奈米結構由於其不同於傳統塊材的物理特性,以及它在奈米尺度電子元件應用上的潛力進而受到相當大的注意。然而,電子元件進入奈米尺度的同時,材料需要具備高的機械強度,同時保持良好的導電特性,避免因為元件尺寸的縮小而提高電致遷移效應對元件損壞的可能性,才能進而延長電子元件的壽命。有文獻指出,若在銅的晶粒中引入高密度雙晶結構,不僅能大幅提升其機械性質,同時維持良好的導電率,並且使得銅具備較高的抗電致遷移特性。在本實驗中,我們已經成功地使用脈衝電鍍沈積法在自製陽極氧化鋁模板中製備出具有高密度竹節狀雙晶結構的銅奈米線。本實驗藉由改變電鍍製程中的電流密度及電鍍環境溫度,進而改變銅奈米線的結晶方向及微結構。銅奈米線經由X-ray結晶繞射儀分析顯示具有[111]的優選方向,透過高解析穿透式電子顯微鏡的觀察,銅導線平均雙晶間距為10至30奈米,且隨著脈衝電流密度的提升而變大。然而在相同電流密度下,降低電鍍環境溫度,銅導線內部的平均雙晶間距會隨之變小。電性量測的結果顯示,具備高密度雙晶結構的銅奈米線,相對於沒有雙晶結構的銅奈米線,在元件損壞前可以承受較大的電流密度。

關鍵字

銅奈米線 脈衝電鍍 雙晶

並列摘要


Copper (Cu) metallization possesses good electrical conductivity and has been utilized as an interconnecting material in microelectronic devices. Besides, one-dimensional (1D) Cu nanostructures have received great attention due to their different physical properties compared to traditional bulk Cu, and have shown attractive potential in nanoelectronic devices these days. However, while the dimension of devices is narrowing down to nanoscale, the material should have high mechanical strength but also remain decent electrical conductivity at the same time, in order to lower the probability of device failure by electromigration, and then extend the device lifetime. Copper with high-density nanotwins is well known to have higher mechanical strength compared to fine-grained Cu, good electrical conductivity, and moreover, better electromigration resistance. We have successfully fabricated Cu nanowires with high density of nanoscale traverse twinning structures in home-made AAO using pulsed electrodeposition. And the texture and microstructure of Cu nanowires are related to several deposition factors, such as current density and deposition temperature. X-ray diffraction (XRD) analysis on the Cu nanowires revealed a [111] preferred orientation. The average twin spacing from 10 to 30 nm have been observed by high-resolution transmission electron microscopy (TEM), and the spacing is larger when the peak current density increases. Moreover, under the same current density, the spacing becomes narrower while deposition is conducted at a lower temperature. From I-V electrical measurement, the Cu nanowires with high density of nanotwins can sustain larger density of current before failure than those without dense nanotwins.

並列關鍵字

無資料

參考文獻


[27] L. Xu, P. Dixit, J. Miao, J.H.L. Pang, X. Zhang, K.N. Tu, and R. Preisser, Appl. Phys. Lett., 90, 033111 (2007)
[21] Y.C. Joo and C.V. Thompson, J. Appl. Phys., 76, 7339 (1994)
[16] C.K. Hu, R. Rosenberg, and K.Y. Lee, Appl. Phys. Lett., 74, 2945 (1999)
[3] H. Masuda, K. Fukuda, Science, 268, 1466 (1995)
[6] O. Jessensky, F. Müller, and U. Gösele, Appl. Phys. Lett., 72,1173 (1998)

被引用紀錄


Chan, T. C. (2013). 奈米雙晶結構銅膜與奈米線之製備與性質研究 [doctoral dissertation, National Tsing Hua University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0016-2511201311343592

延伸閱讀