透過您的圖書館登入
IP:18.222.23.119
  • 學位論文

氧化鋅薄膜電阻式記憶體之轉換機制研究及元件特性量測

Investigation of Switching Mechanisms and Device Measurements from a ZnO Thin Film Resistive Switching Memory

指導教授 : 闕郁倫
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文提出一種方法在鉑/氧化鋅薄膜/鉑的記憶體元件中將燈絲機制的電阻轉換變換成同質介面機制的電阻轉換,探討這兩種轉換行為其不同的電阻轉換特性與元件表現,薄膜中氧空缺的不對稱性分布在此機制變換中扮演著重要的角色,並嘗試在同質電阻轉換操作下去控制保護電流與抹除電壓去做多重組態記憶體的應用。 本論文亦提出了低溫製程的氧化鋅奈米柱陣列與氧化鋅薄膜的雙層結構,其具有獨特的同質接面二極體與電阻式記憶體雙元件表現。此元件利用氧化鋅奈米柱陣列與氧化鋅薄膜分別與鉑介面有不同的蕭特基能障而具有整流特性。氧化鋅奈米柱陣列與氧化鋅薄膜的雙層結構也具備優異的記憶體效能,包括較小的操作電壓和穩定的轉換參數。另外,此結構具有接觸角約125度的疏水特性可以應用在防水元件上。最後,成功地開發一個二極體與一個記憶體整合的應用,有機會實現低溫製程的全氧化鋅記憶體系統。

並列摘要


The thesis has successfully presented a method of transformation of the filamentary resistive switching into the homogeneous interface resistive switching in a Pt/ZnO thin films/Pt memory device. Two types of switching behaviors, which exhibit different resistive switching characteristics and memory performances, were investigated. It has been found that the asymmetric distribution of oxygen vacancies plays a critical role of the transformation between filamentary and homogeneous resistive switching. In addition, under the homogeneous resistive switching, multistate memory can be demonstrated by controlling different compliance currents and reset voltages. The ZnO1-X nanorod arrays (NRs)/ZnO thin film (TF) bilayer device synthesized by low temperature processes were be proposed, exhibiting uniquely double behaviors, namely a homojunction diode and a resistive switching memory. The homojunction diode is due to asymmetric Schottky barriers at interfaces of the Pt/ ZnO NRs and the ZnO TF/Pt, respectively. ZnO1-X NRs/ZnO TF bilayer structure also shows an excelletent resistive switching memory, including a reduced operation voltages and uniform switching performances. A hydrophobic behabvior with a contact angle of ~125o can be found on the ZnO1-X NRs/ZnO TF bilayer structure for a highly water-resistant device application. Finally, a successful demonstratation of one diode–one resistor (1D1R) application has be achieved, providing an opportunity for all ZnO-based memory system at low temperature process.

參考文獻


5. Parkin, S. S. P.; Hayashi, M.; Thomas, L. Science 2008, 320, (5873), 190-194.
2. Parkin, S. S. P.; Hayashi, M.; Thomas, L. Science 2008, 320, (5873), 190-194.
16. Chang, S. H.; Lee, J. S.; Chae, S. C.; Lee, S. B.; Liu, C.; Kahng, B.; Kim, D. W.; Noh, T. W. Physical Review Letters 2009, 102, (2), 026801.
15. Syu, Y.-E.; Chang, T.-C.; Tsai, T.-M.; Chang, G.-W.; Chang, K.-C.; Tai, Y.-H.; Tsai, M.-J.; Wang, Y.-L.; Sze, S. M. Applied Physics Letters 2012, 100, (2), 022904-4.
9. Syu, Y.-E.; Chang, T.-C.; Tsai, T.-M.; Chang, G.-W.; Chang, K.-C.; Tai, Y.-H.; Tsai, M.-J.; Wang, Y.-L.; Sze, S. M. Applied Physics Letters 2012, 100, 022904-4.

延伸閱讀