透過您的圖書館登入
IP:174.129.140.206
  • 學位論文

半導體雷射遭受雙光擾動下之動態特性與其應用

Dynamical Characteristics and Their Applications of Semiconductor Lasers Subject to Dual-Beam Perturbations

指導教授 : 林凡異
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要是在研究半導體雷射遭受雙光擾動(包括雙光注入與同時光注入與光回饋)下的動態特性與其應用。半導體雷射在遭受一般單一光擾動時,其原來的共振腔震盪頻率(cavity resonance frequency)會因為頻率推移效應(frequency pushing effect)而被改變。根據此一頻率的改變量,雷射對於某一光擾動的影響可以被定量的分析。當半導體雷射遭受雙光擾動時,我們可以根據這些頻率的改變量來分析各個光擾動在整個系統內所造成的影響。 對於半導體雷射遭受雙光注入時,我們觀察到了不同的動態區域包括PP、PS、SP、SS、S'S'、S'L、LS'和LL。這些區域是根據原單光注入所產生的動態與特性頻率在第二道光注入時被保留(P)、被改變(S)或被抑制(S')而定義出來的。L這個符號則是表示雷射在單光注入時就已經被穩定鎖頻(stable locking)。為了瞭解這些動態區域與不同注入參數的關係,我們將不同動態區域和它們所對應的雷射動態畫在兩張動態地圖中分析。一張是以兩個光注入強度當變數,另一張則是以兩個光頻差當變數。對於不同動態區域間的轉換情形,我們可以藉由追蹤並比較單光注入與雙光注入下震盪頻率的改變而觀察到。此外,一種在雙光注入下特有的鎖頻態(frequency locking state)也第一次在實驗中被觀察到。這種鎖頻態是在當雙光以相反光頻差注入時,彼此的頻率推移效應剛好互相平衡所發生的結果。 對於半導體雷射同時遭受光注入與光回饋時,我們區分出了PP、PS、SP、 SS和LS'等動態區域。為了研究光注入與光回饋在被擾動的雷射中互相競爭的情 形,這些動態區域與其所對應的雷射動態同樣畫成是以光注入強度與光回饋強度為 變數的動態地圖。從動態地圖我們發現半導體雷射對於光回饋的擾動比光注入更為 敏感。此外,為了證明此一動態地圖的實際可用性,在本研究中我們深入探討不同動態區域與各種利用雙光擾動半導體雷射架構之應用的關係。其中包括了窄線寬光電微波訊號的產生、寬頻渾沌訊號的產生以及穩定雷射等應用。

並列摘要


Dynamical characteristics and their applications of the semiconductor lasers subject to dual-beam perturbations, including dual-beam optical injection (DOI) and optical injection (OI) with optical feedback (OF), are investigated. Base on the shifts of the cavity resonance frequency causing by the OI and the OF, the effects of the perturbations to the lasers can be quantitatively analysed. The roles and influences from each of the perturbations in the dual-beam perturbation schemes are also discussed. For the semiconductor lasers subject to DOI, dynamical scenarios including PP, PS, SP, SS, S'S', S'L, LS', and LL are found. These scenarios are defined and differentiated by whether the dynamics and the characteristic frequencies originated from the single-beam injection scheme are being preserved (P), shifted (S), or suppressed (S') after both beams are simultaneously injected. The letter L is used if the slave laser is already injection-locked by one of the beams under the single-beam injection condition. The mappings of these scenarios and their corresponding dynamical states are plotted in the injection strengths and detuning frequencies spaces, respectively. The transition routes among different scenarios are tracked by comparing the oscillation frequencies of the lasers subject to single-beam optical injection and DOI. Moreover, frequency-locking states are observed experimentally the first time in the DOI, which occur when the frequency pushing effects from the two injected beams with opposite detunings balance each other off. For the semiconductor lasers subject to OI with OF, dynamical scenarios including PP, PS, SP, SS, and LS' are distinguished. To study the competition between the OI and the OF in the lasers, the mapping of these scenarios and their corresponding dynamical states are plotted in the parameter space of the injection and feedback strengths. The mapping shows that the laser is more sensitive to the perturbation from the OF light than the OI light when adding both to the laser simultaneously. This mapping also serves as the guideline for choosing the appropriate operation conditions in various applications employing both the OI and the OF at the same time. In this study, the suitable feedback strengths to narrow the linewidths of photonic microwave signals generated by the OI are studied. The limitation of using OI in enhancing the bandwidths of the chaos states generated by the OF is discussed. Moreover, to suppress the unwanted dynamics due to the feedback, the optimal injection parameters of the OI are shown.

參考文獻


[1] I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laserdynamics on subnanosecond time scales and its potential for chaos communication,”Phys. Rev. A, vol. 62, pp. 011801–1–4, 2000.
[2] Y. Liu, H. F. Chen, J. M. Liu, P. Davis, and T. Aida, “Communication usingsynchronization of optical-feedback-induced chaos in semiconductor lasers,” IEEETrans. Circuits Syst. I, vol. 48, no. 12, pp. 1484–1490, 2001.
[3] H. Mocker and P. E. Bjork, “High accuracy laser Doppler velocimeter using stablelong-wavelength semiconductor lasers,” Appl. Opt., vol. 28, pp. 4914–4919, 1989.
[4] R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,”Opt. Lett., vol. 31, pp. 3600–3602, 2006.
[5] C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, “Dual-frequency laser dopplervelocimeter for speckle noise reduction and coherence enhancement,” Opt. Express,vol. 20, no. 18, pp. 20255–20265, 2012.

延伸閱讀