透過您的圖書館登入
IP:3.147.104.248
  • 學位論文

胜肽與硝醯配位之雙亞硝基鐵錯合物

Peptide- and Nitroxyl-Bound Dinitrosyl Iron Complexes (DNICs)

指導教授 : 廖文峯
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究中,利用小分子DNICs與新設計胜肽的反應,來探討胜肽鍵DNICs/RREs的結構、穩定度與反應性。在文獻中,已報導可用EPR、XAS與NRVS來鑑定DNICs/RREs的生成,在本研究中,證實結合水相FTIR與UV-vis光譜是一種有效的工具,鑑定及區別在水相中生成的胜肽鍵DNICs/RREs。同時,合成出新設計含有螯合半胱氨酸的胜肽鍵DNICs (CnA-DNIC)與具有單牙半胱氨酸的胜肽鍵RREs (KCAAK-RRE/KCAAHK-RRE),並以水相FTIR、UV-vis、EPR、CD、XAS和ESI-MS來做為鑑定。在反應性中,相對於含螯合半胱氨酸DNIC CnA-DNIC與單牙半胱氨酸胜肽KCAAK/KCAAHK的不反應,KCAAK- RRE/KCAAHK-RRE會由CnA觸發,而轉變為CnA-DNIC,加上CnA-DNIC和CnA-RRE之間可經由{Fe(NO)2}9-{Fe(NO)2}10還原態RREs而互相轉換,來證明DNICs對於配位上螯合半胱氨酸胜肽的穩定度是大於單牙半胱氨酸胜肽。另外,本研究中,也說明了鐵硫簇中所處的蛋白質環境以及所含金屬Fe的氧化態,會調控當鐵硫簇產生亞硝基化反應時,所生成的產物(protein-bound RREs, reduced protein-bound RREs 或 protein-bound DNICs)。 在生物擬態化學中,將具有硫醇基螯合的DNIC亞硝基化,會產生含有四個一氧化氮配位的錯合物([Fe(NO)4]−),從晶體圖上來看,具有較長鍵長的N(3)− O(3)/N(4)−O(4)和Fe(1)−N(3)/Fe(1)−N(4)與較彎鍵角的Fe(1)−N(3)− O(3)/Fe(1)−N(4)−O(4),來證實在錯合物[Fe(NO)4]−中,N(3)−O(3)和N(4)−O(4)可形容作為硝醯配位基,再結合理論計算,得知,最好描述錯合物[Fe(NO)4]−的電子結構為帶正一價的{Fe(NO)2}9核心,配位上兩個亞硝醯基與兩個硝醯基。

並列摘要


This study describes the interaction of low-molecular-weight DNICs with short peptides designed to explore the stability and structure of peptide-DNIC/peptide-RRE constructs. Although characterization of DNICs is possible via EPR, XAS and NRVS, combination of aqueous IR νNO and UV-vis spectra can serve as an efficient tool to characterize and discriminate the peptide-bound DNICs/RREs. The de novo chelate-cysteine-containing peptides KC(A)nCK-bound DNICs CnA-DNIC and monodentate-cysteine-containing peptides KCAAK-/KCAAHK-bound Roussin’s red esters KCAAK-RRE/ KCAAHK-RRE were synthesized and characterized by aqueous IR, UV-vis, EPR, CD, XAS and ESI-MS. In contrast to the inertness of chelate-cysteine-containing peptide-bound DNICs toward KCAAK/KCAAHK, transformation of KCAAK-RRE/KCAAHK-RRE into CnA-DNIC triggered by CnA and the reversible transformation between CnA-DNIC and CnA-RRE via the {Fe(NO)2}9-{Fe(NO)2}10 reduced-form peptide-bound RREs demonstrate that {Fe(NO)2}9 motif displays a preference for chelate-cysteine-containing peptides over monodentate-cysteine-containing peptides. Also, this study may signify that nitrosylation of [Fe-S] proteins generating protein-bound RREs, reduced protein-bound RREs or protein-bound DNICs are modulated by both the oxidation state of Fe and chelating effect of the bound proteins of [Fe-S] clusters. Nitrosylation of the chelate-thiolate-containing DNIC triggers NO activation to generate the homoleptic nitrosyl DNIC [Fe(NO)4]− made up of two nitroxyls attached to a delocalized {Fe(NO)2}9 motif. The significantly longer N(3)−O(3)/N(4)−O(4) and Fe(1)−N(3)/Fe(1)−N(4) bond distances (bent Fe(1)−N(3)−O(3)/Fe(1)−N(4)−O(4) bond angel) reflect that N(3)−O(3) and N(4)−O(4) of [Fe(NO)4]− may act as nitroxyl- coordinated ligands. That is, the electronic structure of the [Fe(NO)4]− is best described as a {Fe(NO)2}9 motif coordinated by two nitroxyl (NO−) ligands.

並列關鍵字

Peptide Nitroxyl Dinitrosyl Iron Complexes

參考文獻


77. (a) Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I-J.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9579. (b) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196. (c) Tsai, M.-L.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6583. (d) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872. (e) Costanzo, S.; Ménage, S.; Purrello, R.; Bonomo, R. P.; Fontecave, M. Inorg. Chim. Acta 2001, 318, 1.
11. (a) Paolocci, N.; Katori, T.; Champion, H. C.; John, M. E. S.; Miranda, K. M.; Fukuto, J. M.; Wink, D. A.; Kass, D. A. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 5537. (b) Tocchetti, C. G.; Wang, W.; Froehlich, J. P.; Huke, S.; Aon, M. A.; Wilson, G. M.; Di Benedetto, G.; O’Rourke, B.; Gao, W. D.; Wink, D. A.; Toscano, J. P.; Zaccolo, M.; Bers, D. M.; Valdivia, H. H.; Cheng, H.; Kass, D. A.; Paolocci, N. Circulation Research 2007, 100, 96. (c) Dai, T.; Tian, Y.; Tocchetti, C. G.; Katori, T.; Murphy, A. M.; Kass, D. A.; Paolocci, N.; Gao, W. D. J Physiol 2007, 580.3, 951.
63. (a) Tinberg, C. E.; Tonzetich, Z. J.; Wang, H.; Do, L. H.; Yoda, Y.; Cramer, S. P.; Lippard, S. J. J. Am. Chem. Soc. 2010, 132, 18168. (b) Harrop, T. C.; Tonzetich, Z. J.; Reisner, E.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15602. (c) Tonzetich, Z. J.; Do, L. H.; Lippard, S. J. J. Am. Chem. Soc. 2009, 131, 7964.
93. Li, M.; Huang, Y.-S.; Jeng, U.-S.; Hsu, I-J.; Wu, Y.-S.; Lai, Y.-H.; Su, C.-H.; Lee, J.-F.; Wang, Y.; Chang, C.-C. Biophys. J. 2009, 97, 609.
82. (a) Tweedle, M. F.; Acc. Chem. Res. 2009, 42, 958. (b) Lee, S.; Xie, J.; Chen, X. Chem. Rev. 2010, 110, 3087. (c) Reubi, J. C. Endocr. Rev. 2003, 24, 389. (d) Kuil, J.; Velders, A. H.; Leeuwen, F. W. B. Bioconjugate Chem. 2010, 21, 1709.

延伸閱讀