透過您的圖書館登入
IP:3.22.74.160
  • 學位論文

直接成長二維材料:從成長控制、材料鑑定及免轉移製程之元件應用

Direct Growth of 2D Materials: From Controllable Growth to Material Characterizations and Transfer-Free Device Applications

指導教授 : 闕郁倫

摘要


自從2004年科學家成功於石墨剝離出一個原子層厚度的碳膜,其優異的表現激發了科學家的熱情以及好奇。由於石墨烯在各方面,如:光、電、熱,都表現出驚人的表現,因此石墨烯被視為極具高發展潛力的材料。由於化學氣相沉積法在銅片上製備出大面積單層石墨烯的成功,推向市場的目標又更進一步。然而,為了後續的應用,轉移石墨烯於目標基板的步驟是不可避免的,這卻也造成石墨烯品質的犧牲。因此,為了解決此問題,我們發展出以銅蒸氣輔助,直接於目標基板上沉積石墨烯的技術,以及提出新的成長機制。 取代ITO並應用於透明導電膜,一直是石墨烯受到高度矚目的原因之一。但是,石墨烯的導電率仍然無法跟ITO匹敵。我們成功結合金屬網絡與石墨烯,不僅大幅提升導電率,並且由於石墨烯的保護,提高了此複合材料在嚴峻條件下的操作穩定度。 雖然石墨烯被寄予厚望,但天生零能隙的電子結構,阻礙了場發效電晶體的應用。因此,同樣具備層狀結構的過渡金屬二硫化物吸引了大家的目光,更令人興趣的是它天生的電子能隙。傳統上,常用化學氣相沉積法於爐管製備材料,但其製程時間長、高熱預算。本論文中,我們利用先進儀器,如:雷射、微波系統,實現了直接成長少層於任一基板,並且具備快速、低熱預算的優點。另一特點,除了平行基板的堆疊方向的過渡金屬二硫化物,受到大家的注目外,近年來,不論是理論計算或是實驗數據,皆指出具備垂直結構的過渡金屬二硫化物,在電化學的應用上具有高度潛力。本論文中,我們成功以微波系統,在短時間內(3分鐘),製備出垂直結構的過渡金屬二硫化物,並且製備感測器,經由實驗數據,證明出應用於電化學上的潛力。

關鍵字

直接成長 二維材料 免轉移

並列摘要


Since 2004, scientists successfully exfoliated one-atomic layer carbon layer from graphite, namely graphene, this incredible material had been triggered our passion and enthusiasm until now. Owing to the fabulous properties of various aspects such as optical, electrical, thermal, graphene is highly expected a potential material in all respects. Monolayer and large area of graphene on Cu via chemical vapor deposition (CVD) process make a notable step toward pushing graphene into market. However, the inevitable transfer process badly sacrificed the quality of graphene, hindering the following application. To address this issue, we successfully develop a direct deposition of graphene by means of gaseous catalytic species, Cu vapor, as well as established the mechanism from the view point of Cu vapor. Transparent conducting film is the main target of using graphene for replacing conventional ITO. Nevertheless, the conductivity was still far behind ITO by far. We combined metal meshes with covering graphene, not only improving conductivity as good as ITO but also enhancing the stability in harsh environment by graphene shielding. Thanks to the great development of graphene, transition metal dichalcogenide was also attracted everyone’s attention due to the similar layer structure and its nature band gap property. Differencing with conventional CVD process via furnace, we firstly exploited advanced technique, such as laser, microwave system, to aim for fast and low temperature growth. Moreover, we fabricated the vertical structure of MoS2 with exposing edges via microwave system, and further proved its highly active property in which benefited the application of electrochemistry field.

並列關鍵字

direct growth 2D materials transfer-free

參考文獻


3. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys Rev Lett 2008, 100, 016602.
5. Peigney, A; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 2001, 39, 507-514.
6. Chae, H. K.; Siberio-Perez, D. Y,; Kim, J.; Go, Y. B.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. A Route to High Surface Area Porosity and Inclusion of Large Molecules in Crystals. Nature 2004, 427, 523-527.
7. Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.
8. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Instrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.

延伸閱讀