透過您的圖書館登入
IP:3.14.142.115
  • 學位論文

用於宇稱對稱不守恆量測的高通量鉈原子束

HIGH FLUX ATOMIC BEAM OF THALLIUM FOR PARITY NON-CONSERVATION EXPERIMENT

指導教授 : 劉怡維

摘要


本文的工作探索了用鉈原子束測量奇偶性非保守性(PNC)的前景。利用原子鉈中階梯形躍遷的電磁感應透明性(EIT)可以進一步提高奇偶性非保守性[1]。禁忌躍遷中的磁偶極矩與四極矩之比PNC的實驗和理論方面的重要參數。 具有超管的原子束設備已被構造為產生鉈原子束,以減少多普勒展寬並達到更高精確度的PNC測量。使用我們的設計,通過使用377 nm激光器的實驗,我們成功觀察到高通量原子束。將來,在噴嘴溫度為,噴嘴發散角為522 mrad時,准直的原子束通量可用於PNC測量。

關鍵字

原子束

並列摘要


This thesis work explored the prospect of measuring parity non- conservation (PNC) with Thallium atomic beam. Utilizing electromagnetically induced transparency (EIT) of the ladder-type transition of in atomic thallium allows further improvement on the parity non- conservation [1]. The ratio of the magnetic dipole moment and the quadrupole moment in a forbidden transition is an important parameter in both the experimental and theoretical aspects of atomic PNC. The atomic beam apparatus with hypertubes has been constructed to generate a thallium atomic beam for reduce the Doppler broadening and reaching a higher accurate atomic PNC measurement. A frequency-double 535 nm laser beam couples the and states. The EIT effect modifies the absorption and refractivity for the 1280 nm laser beam through the transition that mixes magnetic dipole transition ( ) and the electric quadrupole transition ( ). The ratio of this forbidden transition can be excreted using the EIT spectrum. The quantum- dot (QD) with wavelength region of 1280 nm, the frequency double 377 nm and the 535 nm lasers have been completed. The tests of the light sources have finished using a Tl hot cell. Using our design, we successfully observe the high flux atomic beam confirm by experiment using 377 nm lasers. At a nozzle temperature of , the collimated atomic beam flux directly after the nozzle is with the divergence angle is 522 mrad can be used for PNC measurement in the future.

並列關鍵字

atomicbeam

參考文獻


Reference
[1] K. Eberl, “Quantum-dot Lasers”
[2] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, J. L. Roberts, C. E. Tanner, and C. E. Weiman, “Measurement of parity non-conservation and an anapole moment in cesium,” Science 275, 1759- 1763 (1997). 1, 6, 156.
[3] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, “High- precision calculation of parity nonconservation in cesium and test of the standard model” Phys. Rev. D 66, 076013 (2002).
[4] N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, “ Precision measurement of parity non- conservation optical rotation in atomic thallium,” Phys. Rev. Lett. 74, 2654- 2657 (1995). 1, 6, 7, 9, 56.

延伸閱讀