透過您的圖書館登入
IP:18.209.209.246
  • 學位論文

六角最密堆積金屬奈米晶體陣列 之製備、性質與應用研究

Fabrication, Properties and Applications of Hexagonal Close-Packed Metal Nanocrystal Arrays

指導教授 : 陳力俊 蔡哲正
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文著重於大面積六角最密堆積金屬奈米晶體陣列的製程開發。金屬奈米晶體的結構鑑定、表面電漿子共振特性以及其在表面增強拉曼散射光譜上的應用,也在本論文中探討與研究。 此種製作大面積、高密度六角最密堆積金屬(金、銀)奈米晶體陣列的製程,結合膠體粒子微影法與退火,成功利用表面能差異,使金屬薄膜形成金屬奈米晶體。此方法可藉由調控金屬薄膜的厚度與膠體粒子的尺寸,準確掌控金屬奈米晶體陣列中晶體的尺寸與中心距離。此外,可藉由適當的表面前處理與金屬鍍膜方法,製作出具有均勻的粒徑分佈的金屬奈米晶體陣列。表面前處理可改善金屬膜的均勻性與連續性,並將均勻金屬薄膜的厚度推降到四奈米,拓展了此製程對金屬奈米晶體尺寸的調變度。此製程製作出的金屬奈米晶體陣列具有面積大於30 × 40 μm2¬的單一排列順序之超晶格¬,並可利用轉印法成功將此金屬奈米晶體陣列從矽基板翻轉至可撓曲的基板上。除金屬奈米晶體外,亦可藉由調變退火氣氛、溫度與時間製作出不同的金屬/氧化物複合奈米結構(包含核殼結構與核/枝狀結構),並能掌控其結構與尺寸。此種不同的金屬/氧化物複合奈米結構的成長機制亦會在此論文中提出。 針對量測出的金屬(金、銀)奈米晶體與金屬/氧化物複合奈米結構的表面電漿子共振特性,將會有系列性的探討與研究。此結果同時也展示出,可利用控制不同金屬的種類、成份、尺寸以及氧化物外殼的厚度,調變其表面電漿子共振特性。此外,以Mie theory為理論基礎的模擬,也會被用來計算金屬(金、銀)奈米晶體陣列的消散(包含吸收與散射)光譜。經過比較,實驗結果與模擬結果相當一致。顯示出此法對於金屬(金、銀)奈米晶體陣列的表面電漿子共振特性具有良好的控制能力。最後,我們也將製備出的金屬(金、銀)奈米晶體陣列做表面增強拉曼散射光譜的測試。結果顯示其具有良好的靈敏度與表面增強拉曼散射效應,可應用在未來利用表面增強拉曼散射特性的生物感測器上。 總結以上,此論文中發展出低價且方便的製程,製作出具有尺寸、材料組成調變性的大面積六角最密堆積金屬奈米單晶晶體陣列與金屬/氧化物複合奈米結構陣列。可藉由改變其幾何條件與結構,調控其表面電漿子共振特性。其展現的良好的表面電漿子共振特性與表面增強拉曼散射特性,可將之應用在表面增強拉曼散射型的生物感測器以及表面電漿子光電元件上。

並列摘要


A facile method to fabricate large-scaled hexagonal close-packed metal nanocrystal arrays has been developed. The characterization of metal nanocrystals, investigation of their localized surface plasmon resonance (LSPR) properties, and further utilization of the LSPR substrates onto surface enhanced Raman scattering (SERS) applications are studied. The facile method combining colloidal lithography and surface energy driven dewetting process was demonstrated successfully to fabricate large-area, high density, hexagonal close-packed, single crystalline metal (Au, Ag) nanocrystal arrays with controllable crystal size of tens of nanometers, center to center spacing and uniform size distribution. The large-area hexagonal close-packed metal (Au, Ag) nanocrystal arrays with various sizes and center-to-center spacing were prepared and manipulated by regulation of thickness of metal and size of colloidal spheres. Appropriate surface treatments and metal deposition method were shown to be critical for obtaining metal nanocrystal arrays with uniform size. The quality of metal thin films can be improved by surface treatments and uniform metal thin films with the thickness below 4 nm are achieved, extending the controllability over the size of nanocrystal. Larger than 30 × 40 μm2 single superlattice domain of Au nanocrystal arrays were formed on Si and can be transferred to flexible substrates, illustrating the versatility of this method to realize metal nanocrystal arrays on various substrates. In addition to metal nanocrystal arrays, multiple metal/oxide (core/shell and core/dendrite) nanostructure arrays are also successfully fabricated by this method. The good controllability over geometrical parameters and structures of metal/oxide nanostructure arrays by control of the annealing temperature, atmosphere and time is demonstrated and the growth mechanism is proposed. The LSPR responses of metal nanocrystal arrays and metal/oxide nanostructure arrays were systematically measured. The LSPR responses can be manipulated by changing the variety, size of metal nanocrystal and the thickness of oxide shell of metal/oxide nanostructures. Simulations of their extinction (including absorption and scattering) spectra based on Mie theory are conducted for comparison. The experimental results exhibited high consistency with simulation, implying the high controllability of LSPR wavelength can be achieved by this method. Surface enhanced Raman resonance (SERS) properties utilizing the LSPR substrates with metal (Au, Ag) nanocrystal arrays are also demonstrated. Good sensitivity and reproducibility make these LSPR substrates promising candidates for future LSPR based biosensors applications. This method provides an inexpensive and facile route to fabricate a large-scaled close-packed single crystalline metal nanocrystal array with controllable sizes compared to the e-beam lithography method for precise regulation of LSPR wavelength and light scattering cross sections. It exhibits excellent versatility and controllability to fabricate large-scaled metal nanocrystal array and metal/oxide nanostructurs arrays with various size, morphology and structures on different substrates. Single crystallinity and long-range order of metal nanocrystal array can be achieved to enhance LSPR performance and benefit directional propagation, which can lead to significant applications on surface-enhanced Raman scattering (SERS) based biosensors, nanoantennas and other plasmonic optoelectronics.

參考文獻


[1.27] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. Lin Wang and Z. Q. Tian, “Shell-isolated Nanoparticle-enhanced Raman Spectroscopy,” Nature, 2010, 464, 392-395.
Chapter 1
[1.1] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, 2003, 107, 668-677.
[1.2] D. D. Evanoff, Jr. and G. Chumanov, “Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections,” J. Phys. Chem. B, 2004, 108, 13957-13962.
[1.3] E. A. Coronado, E. R. Encinaa and F. D. Stefani, “Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale” Nanoscale, 2011, 3, 4042-4059.

延伸閱讀