透過您的圖書館登入
IP:18.191.135.224
  • 學位論文

以水熱、共沉法二步驟製備富鋰錳基正極材料x Li2MnO3.(1-x)LiNi1/3Co1/3Mn1/3O2之電性表現

Investigation of Electrical Performance of x Li2MnO3.(1-x)LiMO2(M=Ni,Co,Mn) Prepared through a Two-stage Process of Co-precipitation and Hydrothermal Methods

指導教授 : 蔡哲正

摘要


Li2MnO3與LiNi1/3Co1/3Mn1/3O2皆為層狀結構,兩者混合能形成充放電區間為2~4.8 V的固溶體富鋰材料Li2MnO3.LiNi1/3Co1/3Mn1/3O2,為一種高伏材料。此材料第一次充放電時將因Li2MnO3氧化脫出Li2O造成不可逆的電容量損失。本實驗討論pH值在共沉法製備富鋰材料前驅體時對電性的影響,此外嘗試使用水熱法與共沉法兩步驟製備活性物質:分別將兩固溶成分Li2MnO3與LiNi1/3Co1/3Mn1/3O2以水熱法與共沉法製備並調整兩製程先後順序,觀察其對電性的影響。研究發現,兩步驟製備法中以先水熱製備Li2MnO3後再共沉法製備LiNi1/3Co1/3Mn1/3O2能降低第一次充放電時的不可逆電容量損失,且具有比直接共沉法製備富鋰材料更好的電容量與循環性能。

關鍵字

富鋰材料 共沉法 水熱法

並列摘要


Both Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 are layered structure, and they can be mixed to form a solid solution Li2MnO3.LiNi1/3Co1/3Mn1/3O2, which its charge-discharge region between 2 and 4.8 V. This material will release Li2O due to Li2MnO3 irreversible decomposition when voltage are above 4.5 V in the first charge cycle, and that’s the reson for loss of capacity in the first cycle. This experiment is composed by three part. First, I will discuss how the pH value affect the electrochemical performances when preparing Li2MnO3.LiNi1/3Co1/3Mn1/3O2 precursor through co-precipitation method. The second and the third parts will take apart Li2MnO3.LiNi1/3Co1/3Mn1/3O2 into Li2MnO3 and LiNi1/3Co1/3Mn1/3O2. We try to prepare Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 through hydrothermal and co-precipitatio method, respectively, and observe how the order of these two step processes affect the electrochemical performances. In my report,process that using hydrothermal method to prepare Li2MnO3 first then co-precipitaion method to prepare LiNi1/3Co1/3Mn1/3O2 thereafter can lower the capacity loss in the first cycle, and even have higher capacity and better cycle ability comparing to Li2MnO3.LiNi1/3Co1/3Mn1/3O2 prepared by co-precipitation method.

並列關鍵字

無資料

參考文獻


[1] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, “Challenges in the development of advanced Li-ion batteries: a review,” Energy & Environmental Science, vol. 4, pp. 3243-3262, 2011
[2] F. Cheng , J. Liang , Z. Tao , and J. Chen, ” Functional Materials for Rechargeable Batteries,” Advanced Materials, vol. 23,pp. 1695-1715, 2011
[4] M. M. Thackeray, C. Wolverton and E. D. Isaacs, “Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries,” Energy & Environmental Science, vol. 5, pp. 7854–7863, 2012
[5] G. Jeong,Y.-U. Kim, H. Kim, Y.-J. Kim and H.-J. Sohn, “Prospective materials and applications for Li secondary batteries,” Energy & Environmental Science, vol. 4, pp. 1986–2002, 2011
[6] B. Xu, D. Qian, Z. Wang, Y. S. Meng,” Recent progress in cathode materials research for advanced lithium ion batteries,” Materials Science and Engineering R,vol. 73,pp. 51-65, 2012

延伸閱讀