透過您的圖書館登入
IP:3.146.221.52
  • 學位論文

具電網至車輛與車輛至電網功能及交錯式界面轉換器之電動車內置磁石永磁同步馬達驅動系統

An Electric Vehicle Interior Permanent-Magnet Synchronous Motor Drive with Interleaving Bidirectional Interface DC/DC Converter and Grid-to-Vehicle/Vehicle-to-Grid Functions

指導教授 : 廖聰明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文旨在開發一以數位處理器為主之電動車用內置磁石永磁同步 馬達驅動系統,並具有電網至車輛充電及車輛至家庭/車輛至電網放電操 作能力。所建構之馬達驅動系統之電力電路由交錯式雙向前級直流-直流 轉換器與三相變頻器組成。前者提供可調控及可提升之直流鏈電壓,以 增進馬達於高速下之驅控性能。而於電網至車輛操作或馬達再生煞車 時,可對蓄電池進行充電。 經由適當控制,所建構之標準永磁同步馬達驅動系統具有良好之驅 控性能,包含啟動、加速、減速及再生煞車等特性。此外,藉由直流鏈 電壓提升、換相移位與弱磁控制等策略,進一步提升了驅動系統之高速 操控性能。本論文亦探究永磁同步馬達無感測控制於電動車驅動之應用 可行性,及從事其操控效能實測評定。在所提之混合型無位置感測控制 架構中,先以高頻訊號注入法令馬達啟動;俟轉速升至一定值,再切換 改採延伸型反電動勢估測法。標準與無位置感測控制永磁同步馬達驅動 系統之驅動性能,均以一些實測結果比較評估之。 於閒置狀態下,所開發永磁同步馬達驅動系統之電力電路,經適當 安排可執行電網至車輛及車輛至家庭/車輛至電網等操作。於電網至車輛 操作中,所形成之車載充電器由單相橋式切換式整流器及後接之降壓型 直流-直流轉換器構成,由電網對蓄電池充電,具有良好之充電控制及交 流入電電力品質特性。此外,以馬達線圈充當為儲能電感之集成型切換 式整流器之效能,亦以一些實測結果觀察之。至於車輛至家庭/車輛至電 網之操作,以既有馬達驅動系統電力電路組接建構一單相三線式變頻 器,藉由所提差模與共模控制,可於獨立模式之車輛至家庭及聯網模式 之車輛至電網操作下具有良好之60Hz 220/110V 交流輸出。

並列摘要


This thesis develops a digital signal processor (DSP) based interior permanent-magnet synchronous motor (IPMSM) drive for electric vehicles (EVs) with grid-to-vehicle (G2V) charging and vehicle-to-home (V2H)/vehicle-to-grid (V2G) discharging operation capabilities. The established EV IPMSM drive consists of a two-leg interleaving bidirectional front-end DC/DC converter and a three-phase inverter. The front-end converter can establish an adjustable and boostable DC-link voltage for the motor drive to enhance its high speed driving performance. It can also allow the battery bank be charged from the mains or the motor during regenerative braking. Through proper control, the established standard EV IPMSM drive preserves satisfactory driving performances, including starting, acceleration, deceleration and regenerative braking characteristics. In addition, the DC-link voltage boosting, the commutation instant tuning and the field weakening approaches are further applied to enhance its performance under higher speeds. In addition, the feasibility and performance assessment of IPMSM sensorless control in EV propulsion are also explored. In the developed hybrid sensorless control scheme, the motor is started under high-frequency signal injection (HFI) sensorless control. As the motor speed rises to a preset value, the sensorless operation is changed to the observed extended back electromotive force (EEMF) based approach. The comparative experimental performance evaluations of the IPMSM drive under standard and sensorless controls are conducted. In idle condition, the developed PMSM drive can be properly arranged to perform G2V and V2H/V2G operations. For G2V operation, an on-board single-phase H-bridge boost SMR based charger is formed. It allows the battery be charged from mains with good line drawn power quality. In addition, the performance of an integrated SMR using the motor windings as energy storage inductors is evaluated experimentally. As to the V2H/V2G operations, a single-phase three-wire (1P3W) inverter is constructed. By applying the differential mode (DM) and common mode (CM) control approaches, it can yield good inverter output waveforms under autonomous V2H and grid-connected V2G discharging modes.

參考文獻


[115]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[80]H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motors,” in IEE Proc. Electric Power Appl., 2001, vol. 147, no. 6, pp. 503-512.
[2]M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[3]P. Zhang and S. S. Williamson, “Recent status and future prospects of integrated starter-generator based hybrid electric vehicles,” in Proc. IEEE VPPC, 2008, pp. 1-8.
[4]S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.

延伸閱讀