透過您的圖書館登入
IP:3.141.201.14
  • 學位論文

利用SU-8聚合物製作的光波導方向耦合器之可調式微流體分光器模擬研究

Numerical Study of Microfluidic Variable Power Splitter Based on SU-8 Polymer Directional Waveguide Coupler

指導教授 : 王立康
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文設計一可調式分光器,使用聚合物光波導方向耦合器,導光層為高分子聚合物SU-8、下披覆層為SiO2,並在方向耦合器上方建置一流體渠道作為上披覆層,藉由調變流體渠道中的流體折射率使得此分光器在輸入TE模態之1550nm波長光時可以得到任意的分光比例。 接著改變元件的結構設計一極化無關的可調式分光器,模擬結果雖然完全達到極化無關可調式分光器,但也已經降低了TE模態與TM模態分光功率的誤差,並且在流體折射率1.46時單一點可以達成極化無關,即TE模態與TM模態之耦合長度相同。

參考文獻


[1] D. Psaltis, S. R. Quake and C. Yang, “Developing Optofluidic Technology Through The Fusion of Microfluidics and Optics,” Nature, Vol. 442, No. 7101, pp. 381-386, 2006.
[3] Z. Li, Z. Zhang, A. Scherer and D. Psaltis, “Mechanically Tunable Optofluidic Distributed Feedback Dye Laser,” Optics Express, Vol. 14, No. 22, pp. 10494-10499, 2006.
[4] W. Song and D. Psaltis, “Pneumatically Tunable Optofluidic Dye Laser,” Applied Physics Letters Vol. 96, No.8, pp. 081101, 2010.
[5] H. Zhu, I. M. White, J. D. Suter, P. S. Dale and X. Fan, “Analysis of Biomolecule Detection with Optofluidic Ring Resonator Sensors,” Optics Express, Vol. 15, No. 15, pp. 9139-9146, 2007.
[6] A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, H. Altug, “Integrated Nanoplasmonic-Nanofluidic Biosensors with Targeted Delivery of Analytes,” Applied Physics Letters, Vol. 96, No. 2, pp. 021101, 2010.

延伸閱讀