透過您的圖書館登入
IP:18.234.232.228
  • 學位論文

合成氧化鈷奈米粒子負載於氮摻雜石墨烯氣凝膠塊材應用於高級氧化程序移除有機染劑

Synthesis of CoO Nanoparticles on N-doped Graphene Aerogel Monolith in Advanced Oxidation Process for the Organic Dye Removal

指導教授 : 林義峯
本文將於2026/07/08開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


至工業革命以來,科技迅速發展雖為人類帶來許多便利,卻伴隨著對地球環境嚴重的破壞,其中又以水資源的污染最為嚴重。因此如何發展廢水處理技術並達到回收再利用成為全球人類一大議題。目前於實廠中以芬頓程序(Fenton Process)作為廢水處理的技術最為廣泛使用,因其具有高效降解效能以及低成本等優勢。然而,於反應過程中其會產生二次汙染之問題,違背廢水處理之目標,因此學者積極發展類芬頓程序(Fenton-like Process),又可稱為高級氧化程序(Advanced Oxidation Process, AOPs)藉由異相觸媒與氧化劑反應產生高氧化還原電位之自由基對有機汙染物進行降解,改善後續分離上問題,降低二次汙染狀況。而近年來有許多學者以過硫酸鹽做為氧化劑進行高級氧化程序之研究,由於硫酸根自由基與氫氧自由基相比具有較高之氧化還原電位(SO4•- : 2.5~3.1 V, OH• : 1.8~2.7 V)及半生期(SO4•- : 30~40 μs, OH• : 小於1 μs),並且硫酸根自由基具有較廣之酸鹼值適用範圍。 本研究以簡易之水熱法製備出氧化鈷奈米粒子負載於石墨烯氣凝膠塊材,藉由石墨烯氣凝膠之高比表面積提高氧化鈷顆粒之分散度,以減少團聚現象發生,提升其降解效能。同時氮摻雜石墨烯氣凝膠具有良好的電傳導能力及機械性質,因此在催化過程中可扮演快速傳導電子之角色,提升其催化反應速率。 另外,本研究亦探討催化過程中之操作參數及系統環境參數,如:氧化劑濃度、抑制劑以及環境酸鹼值等。最終以操作參數,染劑濃度為10 ppm/10 ml,氧化劑PMS濃度為600 ppm/1 ml下擁有最佳之降解效能97.81±0.63 ppm/g•min。為了驗證本研究中主要之降解活化物質,於實驗中添加入抑制劑,可發現使用BQ及L-histidine作為抑制劑後降解效能有最大幅度的下降,並於EPR檢測中以TEMP作為捕捉劑,TEMP會與單線態氧反應形成TEMPO,而DMPO會與超氧自由基反應形成DMPOX,再次驗證本研究主導之活性催化物質為單線態氧及超氧自由基。於再生實驗中可以觀察到此觸媒仍可維持優越之降解效能,由此可證,本研究所製備出之觸媒具有高效且可回收再利用之優勢觸媒。

並列摘要


The environment of the world has been seriously polluted since the industrial revolution. Among them, the pollution of industrial wastewater is the most serious. Therefore, the water resource management and wastewater treatment become a big issue for human beings. Fenton process is a kind of wastewater treatment; it owns high efficiency for the organic dye degradation and simple equipment during operation. But the homogeneous ferrous ions will be transferred to ferric ions which could lead the secondary pollution. Therefore, researchers replaced homogeneous catalyst with heterogeneous catalyst to solve the secondary pollution; it is called Fenton-like process or advanced oxidation process (AOPs). There are many researches about sulfate radical advanced oxidation process (SR-AOPs) in recent year. Because sulfate radicals (2.5~3.1 V) have higher redox potential than hydroxyl radicals (1.8~2.7 V), and also the half-life (SO4•- : 30~40 μs, OH• : less than 1 μs). The higher redox potential and longer half-life could improve the efficiency in organic dye degradation. In this study, we successfully synthesize CoO nanoparticles on nitrogen doped graphene aerogels monolith by hydrothermal method. Graphene aerogel enhance the dispersion of CoO nanoparticles to increase the efficiency of RhB degradation. Nitrogen doped graphene aerogel owns excellent electrical and mechanical properties which increase the conductivity. In this work, we also discuss the effect of metal containing amount, reduction agent amount, oxidant amount and pH value etc. And after standardization the data, the degradation efficiency can reach 97.81±0.63 ppm/g•min. In inhibitor test, we can observe that the performance decrease sharply when adding BQ and L-histidine into the system. Verification by EPR spectroscopy, using TEMP and DMPO as spin trap agents. TEMP could react with 1O2 to form TEMPO; DMPO could react with O2•- to form DMPOX. According to inhibitor test and EPR spectroscopy, the major active catalytic substances are 1O2 and O2•- in this research. And after four times of regeneration, CoO/NGA monolith can maintain 99.4% of original efficiency; it proves that CoO/NGA owns an excellent stability.

並列關鍵字

Advanced oxidation process NGA CoO PMS hydrothermal

參考文獻


[1] A. S. Alsharhan and Z. E. Rizk, "Overview on Global Water Resources", in Water Resources and Integrated Management of the United Arab Emirates: Springer, pp. 17-61, 2020.
[2] T. Mabhaudhi, G. Simpson, J. Badenhorst, M. Mohammed, T. Motongera, A. Senzanje and A. Jewitt, "Assessing the State of the Water-Energy-Food (WEF) Nexus in South Africa", South Africa: Water Research Commission University of KwaZulu-Natal.(WRC Report No KV 365/18) Date of access, vol. 1, pp. 0365-18, 2018.
[3] B. Clarke, "Fenton Family - Advanced Oxidation", 2017.
[4] T. W. Bank, "Agencies plead for global action on water pollution", 2019.
[5] W. H. Perkin, "LXXIV.—On mauveine and allied colouring matters", Journal of the Chemical Society, Transactions, vol. 35, pp. 717-732, 1879.

延伸閱讀