透過您的圖書館登入
IP:18.191.228.88
  • 學位論文

可重製摺剪造型適應型態研究

The Adaptive and Reconfigurable Morphology Research for Kirigami Modeling

指導教授 : 陳宏銘

摘要


透過文獻研究,歸納自適應性可分為Auto-adaptation自動適應性與Self-adaptation自身適應性兩種。在建築折板系統領域中,摺疊是建築產生適應性的其中一項方法,目前使用參數化軟體Grasshopper的摺疊模擬並沒有固定的標準操作,在模擬不同形態的折疊顯得不便利。對比相關文獻後,發現可重製的形狀記憶材料適合用來執行這種自身適應的需求,在整個可動式折板系統中,將其設定為鉸接材料,可以產生特定的功能性。因此,本研究想系統化模擬摺疊的方法,並以此基礎配合形狀記憶材料,發展出一個可重製的摺疊實體作品。   本研究可分為「切割平摺紙之動態構造模擬」與「實際應用形狀記憶聚合物於自身適應摺疊構造」兩個部分)。第一部分,探討如何系統化切割平摺紙之動態模擬。參考Daniel Piker利用Kangaroo Physic進行摺紙模擬的方法,以既有剛性平摺紙模擬演算為基礎,優化程式架構並額外延伸探討切割摺疊演算,簡化過去需要數十種輸入條件才能完成網格面生成的限制,在模擬不同狀態時無需重新編寫程式架構。第二部分,藉由紙張摺疊測試分析摺疊面的機構組合方式,藉此找出後續成品的摺疊樣態發展方向。思考不同設施與開口尺度對空間使用者感受的影響,同時對於開口的功能及形式做出分析。最後藉由形狀記憶環氧樹脂聚合物SMEP材料,以此為材料成為實體作品。   本研究利用形狀記憶環氧樹脂聚合物SMEP來做出多種變形,以此來達成使用者的需求產生可重製適應性,以同樣的形態發展出四種不同的可重製狀態。研究總結Grasshopper的摺疊模擬方法,比對其他模擬相關文獻,發現Kangaroo Physic能模擬力學互動,但模擬出的型態只會是近似值,若是追求精確,建議直接使用幾何關係來模擬摺疊;若是要追求效率,推薦使用本研究之方法。此外,本研究方法是直覺化的摺紙演算過程,特別與董泓慶〈自由曲面之摺紙模擬〉的逆向工程之演算法拿來對比相異之處。再者,本研究產生了割縫拉伸摺疊,可以破壞原表面的結構組成;配合形狀記憶材料的使用,可以直接硬化保留較為真實的摺疊型態,使彎摺處能自己產生固定的力量,同時提供彎摺時的自由性以及硬化時維持形狀所需的強度。從建築適應性而言,認為面對自身適應性Self-adaptation課題時,可以嘗試利用記憶材料來完成,使其成為一種可回收重啟、可重製的設施。

並列摘要


Through literature research, it is concluded that adaptation can be divided into two types: Auto-adaptation and Self-adaptation. In the field of architectural folding system, folding is one of the methods for building adaptability. At present, the folding simulations using the parametric software Grasshopper do not use a standard operation and are not convenient to simulate different forms of folding. After comparing the relevant literature, it is found that the reconfigurable shape memory materials are suitable to carry out those self-adaptive requirements. In the movable folding system, it can be set as the hinge material, which can produce specific functionality. Therefore, this research intends to simulate the folding method systematically, and use this method to cooperate with shape memory materials to develop an implementation for reproducible folding.   This research can be divided into two parts: "Dynamic structure simulation of flat-folding paper-cut" and " Practical applicate shape memory polymer in a self-adaptive folding structure ". The first part discusses is how to systematically the dynamic simulation of flat-folding paper-cut. Refer to Daniel Piker's method of using Kangaroo Physic for origami simulation, based on the existing rigid flat origami simulation algorithm, optimize the program structure and extend the discussion of paper-cut calculations, simplifying the restrictions that required dozens of input conditions to complete the mesh generations. No need to rewrite the program structure when simulating different states. In the second part, the paper folding test is used to analyze the mechanism combination of the folding surface to find out the development direction of the subsequent finished product's folding pattern. Consider the influence of different facilities and scales on the experience of space users, and analyze the function and form of the opening. Finally, implement the substance work by the shape memory epoxy resin polymer (SMEP) material.   This research uses the shape memory epoxy resin polymer (SMEP) to make a variety of deformations, to achieve the needs of users to produce reconfigurable adaptability, and develop four different reproducible states in the same origin form. The research summarizes the folding simulation method of Grasshopper. Compared with other simulation-related literature, it is found that Kangaroo Physic can simulate mechanical interaction, but the simulated shape can only be an approximation. If you are pursuing accuracy, it is recommended to directly use geometric relationships to simulate folding; if you want to pursue efficiency, it is recommended to use the method of my research. In addition, this research method is an intuitive origami calculation process, especially compared with Dong Hong-qing's "Free-form Surface Origami Simulation" which uses a reverse engineering algorithm. Furthermore, my research produced slotted cut folding, which can destroy the structure of the original surface. By the use of shape-memory materials, it can be directly hardened to retain a more real folding pattern, so that the bending part can generate a fixed force by itself. At the same time, it provides freedom when bending and the strength required to maintain the shape when hardened. From the perspective of architectural adaptability, it is believed that when facing the self-adaptation, we can try to use memory materials to complete it, and make it to be a recyclable, restartable, and reconfigurable facility.

參考文獻


1. Agirbas, A. (2017). The Use of Simulation for Creating Folding Structures. eCAADe ,35, 325,329.
2. Alexander, C., Ishikawa, S. Silverstein, M. (1977). A pattern language: towns, buildings, construction. New York: Oxford University Press.
3. Autodesk, Inc. (2019). Workspace|Dynamo Primer. Dynamo Primer website. Retrieved on Apr. 2021 from https://primer.dynamobim.org/zh-tw/02_Hello-Dynamo/2-3_the_workspace.html
4. Blazev, A.S. (2016). Global energy market trends. Lilburn, GA : Fairmont Press, Inc.
5. Bonnefin, I. (2016). Emerging materials: thermo bimetals. Certified Energy website. Retrieved on Sep. 2021 from https://www.certifiedenergy.com.au/emerging-materials/emerging-materials-thermo-bimetals

延伸閱讀