透過您的圖書館登入
IP:3.144.124.232
  • 學位論文

聚烯烴及其奈米複合材料之合成與應用

Synthesis and Application of Polyolefins and Polyolefin Nanocomposites

指導教授 : 江彰吉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


聚烯烴是市面上最常用的聚合物產品,由於其缺乏官能基故限制了其應用性,故本研究論文主要在於改善聚烯烴之應用性及其物理性質。 本研究論文共分為兩部分,第一部分係直接以有機茂金屬觸媒及後過渡金屬觸媒系統將烯烴單體與具官能基之烯烴單體進行共聚合反應以增加其應用性並進行聚烯烴之研究。在聚乙烯方面,利用雙亞胺鎳(II)觸媒系統(N4Ni2Cl4/甲基氧化鋁)可合成出低密度聚乙烯;利用有機茂金屬觸媒系統(rac-Et(Ind)2ZrCl2/甲基氧化鋁)可合成出高密度聚乙烯。官能化聚乙烯是將乙烯與11-氯基-十一烯及9-十二烯-醇進行共聚合反應。利用rac-Et(Ind)2ZrCl2/甲基氧化鋁觸媒系統合成之聚(乙烯-co-9-癸烯醇),其醇基含量可達2.19 mol%,並可改質為聚(乙烯-co-乙烯基氫硫酸甲酯)並可合成聚乙烯接枝聚甲基丙烯酸甲酯作為高分子混摻時之調和劑。利用N4Ni2Cl4/甲基氧化鋁觸媒系統合成之聚(乙烯-co-11-氯基-十一烯),其氯基可達9.8 mol%. 利用N2NiCl2及N4Ni2Cl4/甲基氧化鋁觸媒系統合成聚苯乙烯及官能化聚苯乙烯。此單核與雙核之後過渡金屬觸媒可成功的聚合聚苯乙烯,在甲苯為溶劑時可合成出苯乙烯寡聚物,而官能化聚乙烯是在上述觸媒的催化下將苯乙烯與4-氯甲基苯乙烯進行共聚合反應。在不同反應條件,氯甲基在共聚物中可達各種含量,在N4Ni2Cl4/甲基氧化鋁觸媒系統催化下可達最高含量─13.99%。在共聚物中的氯甲基亦可作為原子轉移聚合法之起始基,故聚苯乙烯接枝聚甲基丙烯酸甲酯也在此部分的研究中被合成。 第二部分則是將蒙脫土以奈米級的分散方式分散至聚烯烴中形成奈米複合材料以增加其物理性質。在本研究中利用原位聚合法、乳化聚合法及懸浮聚合法合成聚烯烴─黏土奈米複合材料。原位聚合法係利用觸媒架附於黏土層間進行苯乙烯催化聚合反應以合成聚苯乙烯─黏土奈米複合材料。而乳化聚合法及懸浮聚合法合成則用於合成聚苯乙烯─黏土奈米複合材料及聚甲基丙烯酸甲酯─黏土奈米複合材料。PK-802及Closite® Na+兩種不同來源的蒙脫土在本研究中被使用以討論不同礦源對於蒙脫土分散程度及對聚烯烴物理性質提升程度的影響。此外不同長度之單長碳鏈與雙長碳鏈取代的兩種系列四級胺鹽之改質劑也用於本研究中以討論不同極性及大小之改質劑所適用之聚烯烴及其對物理性質提升程度的影響。此外,在本研究論文中所合成之聚烯烴─黏土奈米複合材料其物理性質均有顯著提升。

並列摘要


The research focuses on improving the properties and applications of polyolefin. It contains two parts. In the first part, polyolefin and functional polyolefin were prepared by metallocene and the Brookhart-type catalyst system. The high-density-polyethylene was prepared by the rec-Et(Ind)2ZrCl2/MAO catalyst system. The low-density polyethylene was prepared by the Brookhart-type catalyst, N4Ni2Cl4, /MAO catalyst system. The functional polyethylene was prepared by copolymerization of ethylene and 9-decene-1-ol or 11-chloro-undecene. The quantity of hydroxyl group of the poly(ethylene-co-9-decene-1-ol) prepared by rec-Et(Ind)2ZrCl2/ MAO catalyst system can reach 2.19 mol%. It was also modified to poly(ethylene-co-vinyl mercaptoacetate) graft from this copolymer and then formed PE-g-PMMA. The quantity of chloro group in the poly(ethylene-co-11-chloro-undecene) prepared by N4Ni2Cl4 /MAO catalyst system can reach 9.8 mol%. The polystyrene and functional polystyrene were prepared by N2NiCl2 and N4Ni2Cl4/ MAO catalyst system. The functional polystyrene was prepared by copolymerization of styrene and 4-chloromethyl styrene. The quantity of chloromethyl group of the poly(styrene-co-4-chloromethyl styrene) prepared by N4Ni2Cl4/ MAO catalyst system can reach 13.99 mol%. The PMMA was grafted from the chloromethyl group in the poly(styrene-co-4-chloromethyl styrene) by atomic transfer radical polymerization (ATRP) to form PS-g-PMMA. In the second part, an in situ, emulsion and suspension polymerization was used to prepare for polystyrene/clay and poly(methyl mathacrylate)/clay nanocomposite. The in situ polymerization was use the N4Ni2Cl2 catalyst to support onto the clay layers to prepare polystyrene/clay nanocomposite. There were two different source of clay, PK-802 and Closite® Na+, one and two alkyl substituent quaternary ammonium salt modify clay was used to prepared PS/clay and PMMA/clay nanocomposite. The effect of different clays and modification agents in the nanocomposites were studied. The thermal and mechanical properties were shown significantly increased with clay dispersed in the polymer matrix.

並列關鍵字

polyolefn nanocomposite polyolefin

參考文獻


157. Xie, W.; Hwu, J. M.; Jiang, G. J.; Buthelezi, T. M.; Pan, W.-P. Polymer Engineering and Science. 2003, 43, 1, 214-222.
50. Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888.
46. (a) Johnson, L. K.; Killian, C. M.; Arthur, S. D.; Feldman, J.; McCord, E. F.; McLain, S. J.; Kreutzer, K. A.; Bennett, A. M. A.; Coughlin, E. B.; Ittel, S. D.; Parthasarathy, A.; Tempel, D. J.; Brookhart, M. S. WO 96/23010. (b) Brookhart, M. S.; Johnson, L. K.; Arthur, S. D.; Feldman, J.; Kreutzer, K. A.; Bennett, A. M. A.; Coughlin, E. B.; Ittel, S. D.; Parthasarathy, A.; Tempel, D. J. U.S. Patent 5 886 224, 1999. (c) Brookhart, M. S.; Johnson, L. K.; Killian, C. M.; Arthur, S. D.; Feldman, J.; McCord, E. F.; McLain, S. J.; Kreutzer, K. A.; Bennett, A. M. A.; Coughlin, E. B.; Ittel, S. D.; Parthasarathy, A.; Wang, L.; Yang, Z. U.S. Patent 5 866 663, 1999. (d) Brookhart, M. S.; Johnson, L. K.; Killian, C. M.; Arthur, S. D.; McCord, E. F.; McLain, S. J. U.S. Patent 5 891 963. (e) Brookhart, M. S.; Johnson, L. K.; Killian, C. M.; McCord, E. F.; McLain, S. J.; Kreutzer, K. A.; Ittel, S. D.; Tempel, D. J. U.S. Patent 5 880 241, 1999.
130. Choi, Y. S.; Wang, K. H.; Xu, M.; Chung, I. J.; Chem. Mater. 2002, 14, 2936-2939.
131. Kim, Y. K.; Choi, Y. S.; Wang, K. H.; Xu, M.; Chung, I. J.; Chem. Mater. 2002, 14, 4990-4995.

被引用紀錄


林宏枝(2004)。利用押出成形技術製造聚丙烯奈米複合材料 及其機械與熱性質之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200400510

延伸閱讀