透過您的圖書館登入
IP:3.15.219.217
  • 學位論文

聚烯烴奈米複合材料之合成與應用

Synthesis and Application of Polyolefin Nanocomposites

指導教授 : 江彰吉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


中文摘要 本篇論文主要分成兩大部分來進行研究以及討論,第一部分,是利用過渡金屬觸媒來進行聚烯烴的合成,以及使用聚甲基苯乙烯作為共單體進行共聚合反應,接著再利用陰離子聚合法來進行接枝聚合反應,將聚甲基丙烯酸甲酯接於共聚物側鏈上,最後使用酸化反應,令聚丙烯與聚甲基苯乙烯共聚物成功的行官能化反應;在第二部分中,首先使用過渡金屬觸媒架附的方式,合成聚丙烯與黏土奈米複合材料,另外在聚苯乙烯與黏土的奈米複合材料的製備中,採用了乳化聚合反應、觸媒架附的方式以及活性自由基聚合法,並對材料的各項性質作討論。 在使用過渡金屬觸媒的聚合反應中,由於TiCl3觸媒的聚合特性,因此我們可以得到具有同排立體特異性的聚丙烯,在低溫下所得到的同排結構會比較顯著,由於低溫時的分子動能較低,聚合反應的進行也較慢,因此會較有規則性的結構產生,並且在高溫的聚合反應中,所得到的分子量將會比較小,並且分子量分佈也較寬;而在共聚合反應中,於低溫下進行反應,將可以得到較高的共單體莫耳百分比,以及添加較多含量的甲基苯乙烯於反應中,也可以有相同的結果產生,而共單體的含量在共聚物中增加,由於具有較大之取代基,將會降低材料的結晶度。 而在加入甲基丙烯酸甲酯的接枝聚合反應中,利用加入的單體濃度以及反應的時間的不同,可以有效的控制接枝後的共聚物組成,而共聚物的熱性質也隨著接枝的比例上升而有所變化,由於接枝比例的增加,並且甲基丙烯酸甲酯具有較長的側鏈,令共聚物具有較低的結晶度,並且此共聚物可以擁有兩種不同高分子的熱性質特性;接著利用酸化反應令共聚物帶有官能基,具有官能基的高分子,將其使用作為薄膜使用,由於在薄膜的孔洞中具有官能基,因此在作為分離以及過濾將可增加聚丙烯的用途。 在高分子與黏土的奈米複合材料中,使用層狀無機層材可以有效的提升材料的各項性質,由於其表面佈滿了許多的官能基存在,在進行觸媒架附的原位聚合反應時為一大阻力,因此將助觸媒架副於黏土層上,再進行聚合反應為本篇論文合成聚丙烯奈米複合材料的主要方法,再添加不同比例的黏土中,材料的各項熱性質均有提升,並且在機械強度上,也可以獲得提高的效果,在抗磨耗的測試上,利用掃描式電子顯微鏡可以清楚的比較不同成分的改善效果。 在聚苯乙烯奈米複合材料的合成中,使用了乳化聚合法、觸媒架附的方式以及活性自由基聚合法,分別得到完全剝離狀態的奈米複合材料,並且在熱性質的提升效果上,均為正面的結果;在硬度的結果中,隨著無機黏土含量的增加,可以使得材料具有較高的硬度表現;另外在有機溶劑的阻抗上,也可以藉由材料成份的改變,具有較佳的表現,因此所得到的材料在各項性質上均可以有提升的效果。

並列摘要


Abstract There are two major parts in this thesis: part I consist of the synthesis of polypropylene and its copolymers by Ziegler-Natta catalyst system, and the synthesis of grafted copolymers by anionic polymerization. The polypropylene membrane was prepared with the functional copolymer. Part II consist of the polypropylene-clay nanocomposites were synthesized via supported catalyst. And the polystyrene-clay nanocomposites were synthesized via emulsion polymerization, supported catalyst and living free radical polymerization. The isotactic polypropylene was synthesized by TiCl3 and AlEt2Cl. The higher ratio of isotactic and the higher molecular weight in polymer materials was prepared in the lower reaction temperature. The thermal properties of the polymer could be kept very well. In the copolymerization, the higher mole ratio of comonomers p-methylstyrene could be obtained in the lower reaction temperature. Experiment results indicate that the crystalline of the polypropylene was deeply affected by the amount of the p-methylstyrene in the copolymer. The grafted copolymerization can be preceded with polypropylene and methylmethacrylate via anionic polymerization. The amount of poly(methyl- methacrylate) in the copolymer is increased with the reaction time and the concentration of the methylmethacrylate. When the copolymer contains more grafted comonomers the lower crystalline of the copolymer is obtained. There are glass transition temperature (Tg) and melting point temperature (Tm) in the copolymers. The copolymers could have the thermal properties of polypropylene and poly(methyl -methacrylate). The polypropylene membranes which have the functional porous were prepared with the functional copolymers. The polypropylene-clay nanocomposites are synthesized by supported catalyst on the inorganic clays. The XRD and TEM indicate the layers of clay are dispersed in the polymer materials very well. The higher thermal properties and mechanical properties of the materials are obtained in the higher clay contents. The SEM shows that the surface of the materials has better resistance after the materials were scraped with the abrasion testing. The polystyrene-clay nanocomposites are prepared by using emulsion polymerization, supported catalyst and living free radical polymerization. The exfoliated nanocomposites are indicated by the XRD patterns and TEM photograph. The thermal stability and hardness of the materials is increased with the clay contents. The molecular weight and molecular weight distribution of the polymers in the materials can be controlled very well by living free radical polymerization. The properties of the matrix is improved obviously.

參考文獻


13. Sherman, L. M., Plast. Technol., 1996, 42, 38
36. Gupta, V. K.; Satish, S.; Bhardwaj, I. S., Rev. Macromol. Chem. Phys. C, 1994, 34, 439
10. Chung, T. C.; Rhubright, D.; Jiang, G. J., Macromolecules, 1993, 26, 3476
17. Choi, Y. S.; Wang, K. H.; Xu, M.; Chung, I. J.; Chem. Mater. 2002, 14, 2936-2939
21. Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Scanlon, L. G.; Giannelis, E. P., Adv. Mater., 1995, 7, 154

延伸閱讀