透過您的圖書館登入
IP:3.238.62.124
  • 學位論文

可攜式燃料電池之市場推估與產業策略分析

An Analysis on the Market Potential and Industry Strategy of Portable Fuel Cell Industry

指導教授 : 林師模 林晉勗

摘要


台灣從 2000 年起開始擴大燃料電池技術研發規模,距今投入燃料電池產業已有十餘載,但目前的產業規模仍無法與國際相比擬。我國燃料電池的產業鏈主要是以開發電池系統及研發雙極板的廠商居多,而受限於國外業者之專利保護及技術優勢,雖然有廠商投入相關之核心關鍵材料與零組件開發,但仍屬萌芽階段,導致許多零件仍需要仰賴進口而使產品成本居高不下。本研究之目的在結合產業與專利分析,探討我國可攜式燃料電池技術發展的定位為何?此外,也搭配計量分析,相互檢證及推估未來台灣可攜式燃料電池產業的市場潛力,進而提出相對的產業發展策略。 全球可攜式燃料電池已有少數產品發表及販售,但仍未達量產階段,因此可彙集用於分析之數據資料相當有限。有鑑於此,本研究主要依據市場現況及全球專利申請及核可情況來進行市場分析,另外再藉由日本及台灣鋰電池發展經驗,透過估計日本二次電池及台灣鋰電池產業之學習曲線,推估其未來之可能學習效果,也透過估計鎳氫電池與鋰電池間之替代彈性,推估燃料電池與鋰電池之間可能的替代彈性。之後,利用台灣鋰電池與燃料電池的實際與推估之產量趨勢,與既有已估算出之學習彈性值結合替代彈性值所推估出之燃料電池取代鋰電池數量趨勢,即可推估鋰電池與燃料電池間之價格比趨勢,進而推估出台灣燃料電池未來的產量潛力。 本研究之專利分析顯示,可攜式燃料電池在 2009 年專利已經被大量申請,不過至 2014 年還只有零星的商業化可攜式燃料電池,顯示尚未真正進入量產階段,但於近兩年量產的機會相當高。計量估計方面,本研究估計之鋰電池產業學習彈性值,台灣為 -0.408,而日本則為 -0.145 至 -1.163,由於學習彈性值的高低反映了單位成本的可能變化,此一結果顯示台灣在生產技術上稍有進步,但與日本相較仍有一些落差。另外,本研究估計之鎳氫電池與鋰離子電池間之替代彈性值為 1.54,若假設燃料電池與鋰電池之替代彈性亦為 1.54 左右,在1個燃料電池可替代 4~6 個燃料電池的假設下,則至 2020 年時,燃料電池成本將僅為鋰電池成本的 0.95 至 1.92 倍,至於燃料電池之市場規模,預估至2020年時我國年產量約200萬~500萬個。

並列摘要


Taiwan has been devoting to fuel cell research for more than 15 years. However, the industry scale is still not comparable to the major countries in the field. Domestic firms have mainly focused on the development of fuel cell systems and bipolar plates and the development of key materials and components is still at a very early stage. This study aims at examining the current state of Taiwan’s portable fuel cell industry and quantitatively estimating its market potential. The results will provide important information for firms in developing their future business strategy. Globally, portable fuel cells have not reached the stage of mass production and it means only limited data are available for research. As such, we rely on current market information and patent analysis to shed some lights on the potential development of future fuel cell market. Quantitatively, we estimate the learning curve of lithium battery industry for both Taiwan and Japan. We also estimate the substitution elaticities between nickel hydrogen and nickel lithium batteries, with which the analogic development between nickel lithium and fuel cell can be estimated. These results are then used to estimate the trend of cost ratio and, with the help of the phase diagram, the market potential of fuel cell industry. Our patent analysis results show that the peak year of patent application is 2009. However, up to 2014 there are still only very limited commercial portable fuel cell products available, indicating a high probability of reaching the mass production stage in two years. Econometrically, our results show a learning elasticity of -0.408 for Taiwan and a range of -0.145 to -1.163 for Japan for lithium battery industry. In addition, the elasticity of substitution between nickel hydrogen and nickel lithium is estimated to be 1.54. These lead to a cost ratio of fuel cell to lithium battery of 0.95 to 1.92 in 2020, under the assumption that 4 to 6 nickel lithium batteries can be substituted with 1 fuel cell. Moreover, the result shows that the production will be around 2 million to 5 million units annually by 2020.

參考文獻


陳寶華(1999),燃料電池文獻與專利之科學計量研究,資訊與圖書館學系碩士班 ,未出版碩士論文。
李勝隆(2011),應用模糊層級分析法探討我國電動車電池技術之發展策略,國立中央大學管理學院高階主管企管碩士班,未出版碩士論文。
吳小俐(2008),台灣保健食品市場需求預測之研究,國立成功大學企業管理學系碩士在職專班,未出版碩士論文。
陳郁潔(2009),台灣可攜式燃料電池產業之市場潛力推估,中原大學國際貿易學系,未出版碩士論文。
劉蕙瑜 (2013),再生能源階層成本學習曲線-以台灣風力與太陽光電為例,國立清華大學工業工程與工程管理學系,未出版碩士論文。

延伸閱讀