透過您的圖書館登入
IP:18.216.186.164
  • 學位論文

氮摻雜改質石墨烯與新穎過渡金屬氧化物於儲能負極材料之應用

Nitrogen-doped Few Layer Graphene and Novel Transition Metal Oxide as Anode Materials for Energy Storage Applications

指導教授 : 劉偉仁
本文將於2025/08/12開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


近年來,隨著科技日益進步與蓬勃發展,「環保」與「儲能」已成為了兩大重要的課題。故在本研究中我們探討了一種快速、環保且低成本的製程並用於製備綠色能源材料;而在另一方面,我們也成功開發出新穎的儲能負極材料並將其應用於鋰離子電池與鈉離子電池。 首先我們成功地利用低溫高壓脫層法將8µm石墨原料進行脫層,製備出寡層石墨烯,而我們也去探討不同的製備參數對脫層效果的影響。當提升破碎的循環次數時,Mo-8µm石墨烯的層數僅有7~10層左右、厚度約為3 nm左右,而其比表面積為37.5 m2/g,故由上述結果可知提升破碎的循環次數能夠增加破碎效率,使層數變少,擁有較佳的脫層效果。 接著,我們將製備出來的Mo-8µm石墨烯進行氮摻雜,並比較液相法和固相法之氮摻雜方式對Mo-8µm石墨烯在特性與電性上的影響。液相法氮摻雜石墨烯導電率為4.13×104 S/cm,擁有較佳的導電性;而在電性分析的部分,從C-rate圖可看出液相法氮摻雜石墨烯,在10 C時仍保有247.9 mAh/g的電容量,這是因為液相法氮摻雜石墨烯含有較多的吡啶氮,進而擁有較優異的快充能力。 最後,我們也針對非碳材種類的Fe3V3O8過渡金屬氧化物去做開發,並首次將其應用在鋰離子電池與鈉離子電池的負極材料中,討論不同黏著劑對於此材料在電性上的表現。當使用水性黏著劑CMC+SBR時具有較佳的電化學表現,在0.2 C下充放電100個循環後,電容量仍有581.2 mAh/g。

並列摘要


In rencent years, as technology advances fastly, “Green”and“Energy Storage”have become the most important issues. In our study, we reseach a facile, green and low cost process to obtain a green energy material; On the other hand, we also successfully synthesize a novel anode material for lithium-ion batteries and sodium-ion batteries. First, we successfully exfoliate 8µm graphite to obtain the few layer graphene by jet cavitation. And we also discuss the effect of exfoliation by using different process parameters. When we increase the cycle of cavitation, the thickness and the number of layers of Mo-8µm graphene are about 3 nm and 7-10 layers. Moreover, the surface area of Mo-8µm graphene is about 37.5 m2/g. From the above data, we can say that we can increase the efficiency of exfoliation by increasing the cycle of cavitation. Then, we dope the nitrogen into Mo-8µm graphene from the above part and compare the differences between two kinds of nitrogen-doped methods. And the Mo-8µm graphene by liquid phase N-doping process possesses the excellent conductivity of 4.13×104 S/cm. From the C-rate test, it still has the capacity of 247.9 mAh/g at 10 C because it has more pyridinic N which can enhance the capability of rate performance. Finally, we also synthesize a novel transition metal oxide Fe3V3O8 and apply it as anode materials for LIBs and SIBs. In addition, we further investigate the electrochemical performance of Fe3V3O8 with different binders. The electrode with CMC+SBR shows the capacity of 581.2 mAh/g at 0.2 C after 200 cycles. Therefore, we find that CMC+SBR binder possesses the better electrochemical performance.

參考文獻


參考文獻
[1] 郭迺鋒, 楊浩彥, 林政勳, and 方文秀, "鋰電池產業對台灣經濟發展影響的研究投入產出方法的分析," 2011.
[2] 黃可龍, 王兆翔, and 劉素琴, 鋰離子電池原理與技術. 五南圖書出版公司, 2010.
[3] 李文雄, 鋰電池E世代的能源 ( 行政院國科會科學發展月刊). 2003.
[4] 許家興. 車輛研測資訊 [Online].

延伸閱讀