透過您的圖書館登入
IP:3.149.24.159
  • 學位論文

研究聚乙二醇、陽離子型或雙離子型共聚物改質泛用高分子薄膜並擴展應用範圍

Modification of Typical Polymeric Membranes with PEGylated, Cationic or Zwitterionic Co-polymer to Widen Their Span of Applications

指導教授 : 張雍
共同指導教授 : 費安東(Antoine Venault)

摘要


生物沾黏對於薄膜在液態環境下的長期使用,是一個尚待解決(everlasting)而普遍(ubiquitous)存在的問題。目前經常被用於製備成薄膜的聚合物有聚偏氟乙烯(PVDF)、聚碸(PSf)、聚酯(PET)、纖維素(Cellulose)、幾丁聚醣(Chitosan)等。由於這些薄膜材料的表面對於生物黏附沒有抵抗性,因此需要改質薄膜表面來提升表面對於生物黏附的抵抗性。   在本文中,我們首先研究了用聚苯乙烯和聚甲基丙烯酸乙二醇酯(PS-b-PEGMA)的嵌段共聚物對PVDF中空纖維(HF)膜進行改質,以提高薄膜的通量和耐污性。然後,由甲基丙烯酸丁酯(BMA)和甲基丙烯酸2-(二甲氨基)乙酯(DMAEMA),poly(BMA-r-DMAEMA)或(三甲基氨基)甲基丙烯酸乙酯(TMAEMA),poly(BMA-r-TMAEMA)與PVDF混合,並通過氣相誘導相分離(VIPS)方法製成薄膜。這些薄膜都能夠殺死細菌,但只有PVDF /poly(BMA-r-TMAEMA)薄膜表面可以用六偏磷酸根陰離子的鹽溶液洗滌表面,從而使表面完全再生。在過濾過程中也顯示出殺滅/釋放特性。這種薄膜應用於微過濾很有價值,因為細菌在分離後就會死亡。最後,製備甲基丙烯酸縮水甘油酯(GMA)和磺基甜菜鹼甲基丙烯酸酯(SBMA)的共聚物並通過表面接枝法對殼聚醣軟膜進行表面改質。用優化的共聚物(稱為G20S80)進行官能化幾乎可以完全抵抗生物沾黏,而且在一型糖尿病鼠的皮膚傷口癒合速度、新生組織的組織切片和毛髮增生方面,優化的薄膜相較於未經修飾的殼聚醣薄膜以及商業化的敷料,具有更佳的效果。因此,這獨特、柔軟、多孔且抗生物結垢的殼聚醣薄膜開發用於慢性傷口恢復開闢了一條新的大道。

並列摘要


Bio-adhesion is an everlasting and ubiquitous problem for the application of membranes in liquid environments. Polymers that are often used to prepare membranes include polyvinylidene fluoride (PVDF), polysulfone (PSf), chitosan, polyester (PET), cellulose, etc. These materials are all prone to biofouling; therefore, in-situ modification or surface modification is needed to enhance membrane performances. In this thesis, we first investigated the modification of PVDF hollow-fibers (HF) with a block copolymer of polystyrene and poly(ethylene glycol methacrylate), PS-b-PEGMA, to improve the flux and fouling resistance of the membranes. Then, quaternary random copolymers, made of butyl methacrylate (BMA) and 2-(dimethylamino) ethyl methacrylate (DMAEMA), poly(BMA-r-DMAEMA), or (trimethylamino) ethyl methacrylate (TMAEMA), poly(BMA-r-TMAEMA), were blended with PVDF and membranes formed by the vapor-induced phase separation (VIPS) process. These membranes were able to kill bacteria, and, washing of the surface with a saline solution containing hexametaphosphate anions permitted to entirely regenerate the surface of PVDF/poly(BMA-r-TMAEMA) membranes. The killing/release property was also demonstrated during filtration. Such a modification is valuable in microfiltration processes wherever bacteria are wanted dead after separation. Finally, a chitosan soft-membrane was surface-modified by grafting onto a copolymer on glycidyl methacrylate (GMA) units and sulfobetaine methacrylate (SBMA). Functionalization with the optimized copolymer, referred to as G20S80, permitted to almost entirely mitigate biofouling. Membranes applied on skin wounds of diabetic mice (type 1 diabetes), could outperform not only unmodified chitosan but also a commercial dressing in terms of wound healing rate, histological quality of the newly formed tissue and hair formation. Therefore, these unique soft porous and biofouling-resistant chitosan-based membranes open a new avenue to the development of efficient biomaterials for chronic wound recovery.

參考文獻


Reference
1. Mulder, M., Introduction, in Basic Principles of Membrane Technology. 1991, Springer Netherlands: Dordrecht. p. 1-16.
2. Mulder, M., Preparation of Synthetic Membranes, in Basic Principles of Membrane Technology. 1991, Springer Netherlands: Dordrecht. p. 54-109.
3. Madhura, L., et al., Membrane technology for water purification. Environmental Chemistry Letters, 2018. 16(2): p. 343-365.
4. Ng, L.Y., et al., Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 2013. 308: p. 15-33.

延伸閱讀