透過您的圖書館登入
IP:18.191.171.235
  • 學位論文

具植物表面微結構之電活性光觸媒蠶絲蛋白膜

Electroactive photocatalytic silk fibroin films with plant surface microstructure

指導教授 : 楊大毅

摘要


全球的塑膠垃圾產生環境的影響日益嚴重,並且在環保意識快速成長的時代,綠色材料就成為矚目的焦點,其材料之性質,則為綠色材料發展的關鍵之一。有鑑於此,本研究將發展出「具植物表面微結構之蠶絲蛋白膜」,其具有表面疏水的特性,並複合二氧化鈦及苯胺四聚體,使其具光降解及電致變色、酸鹼變色之功能性,使之應用更廣泛。 本研究利用翻模的技術,成功將葉子表面的微結構複製到蠶絲蛋白膜表面,經由掃描式電子顯微鏡確認其具葉子表面結構之表面形貌,並利用水接觸角量測儀分析其疏水性質,且透過傅立葉轉換紅外線光譜儀及X光繞射儀進行二級結構鑑定,確認β-sheet結構可加強薄膜之疏水效果,也使用薄膜機械強度測試機得其抗拉伸強度可達45 MPa。再者,將二氧化鈦與苯胺四聚體複合到蠶絲蛋白膜上,利用紫外光-可見光光譜儀監測其照光之染料降解效果,且透過循環伏安儀確認其電活性及電致變色的現象。 以上測試皆可證明蠶絲蛋白膜具有葉子表面結構,具疏水效果同時不影響蠶絲蛋白膜之原始性質;並且再複合二氧化鈦及苯胺四聚體後,使蠶絲蛋白膜具備有光降解與電活性之功能。

並列摘要


Recently, the impact of plastic waste on the environment has become more and more serious. Thus, the green materials become the focus of public attention. The properties of the materials is crucial for developing green materials. In this study, we successfully replicated the microstructure of the leaves onto the silk fibroin films. The surface structure and hydrophobicity of the silk fibroin film can be determined by scanning electron microscope and water contact angle measurement, respectively. The chemical structures of the silk fibroin films were confirmed by Fourier-transform infrared spectroscopy and X-ray diffraction. The β-sheet structure could enhance the hydrophobic effect on the silk fibroin film and its tensile strength can reach 45 MPa. Furthermore, titanium dioxide and aniline tetramer were introduced on the silk fibroin film. We can use ultraviolet–visible spectrophotometry and cyclic voltammetry to monitor the photodegradation rate of the composite films and their electrochromic phenomenon, respectively. These experimental results showed that the leaves surface structure can increase the hydrophobicity of the silk fibroin film without affecting the original silk fibroin properties. Moreover, the silk fibroin film has the functions of photodegradation and electroactivity after introducing the titanium dioxide and aniline tetramer.

參考文獻


[1] 天下雜誌 and 蘇彥誠. "海廢多嚴重?回收率不到一成、垃圾恐比魚還重!." https://www.cw.com.tw/article/5099099 (accessed 05-31, 2021).
[2] J. L. Morris et al., "The timescale of early land plant evolution," Proceedings of the National Academy of Sciences, vol. 115, no. 10, pp. E2274-E2283, 2018.
[3] W. Barthlott, M. Mail, B. Bhushan, and K. Koch, "Plant Surfaces: Structures and Functions for Biomimetic Applications," in Springer Handbook of Nanotechnology, B. Bhushan Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 1265-1305.
[4] C. Neinhuis and W. Barthlott, "Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces," Annals of Botany, vol. 79, no. 6, pp. 667-677, 1997/06/01/ 1997, doi: https://doi.org/10.1006/anbo.1997.0400.
[5] B. Bhushan and Y. C. Jung, "Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces," Nanotechnology, vol. 17, no. 11, pp. 2758-2772, 2006/05/16 2006, doi: 10.1088/0957-4484/17/11/008.

延伸閱讀