透過您的圖書館登入
IP:18.116.36.192
  • 學位論文

氣固相反應法生成奈米硒化鋅於SBA-15奈米孔洞之研究

Confinement and characterization of ZnSe nanoparticles inside SBA-15 nanoporous channels via vapor-solid reaction

指導教授 : 鄭吉豐
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


奈米半導體晶體的製備,我們選擇具有直接能隙2.7eV的硒化鋅半導體,利用氣固相的方式,成功的將半導體晶體植入中孔徑孔洞材料,並利用中孔徑材料之孔洞大小來控制半導體晶體硒化鋅的尺寸之方法及特性分析。 在硒化鋅奈米半導體微粒尺寸的控制方法上,我們分別從硒進料的比例、硒化鋅在中孔徑材料內的含量,找到一個最佳成長條件,最後利用不同孔洞大小的中孔徑材料,來控制硒化鋅半導體晶體的尺寸。而孔洞內的硒化鋅熱穩定性在200OC空氣中不會有變化,但是在溼度環境會不穩定。特性分析研究分別利用紫外-可見光光譜儀、穿透式顯微鏡、X射線粉末繞射儀、氮氣等溫吸附 / 脫附儀、掃描式電子顯微鏡來驗證存在於中孔徑材料孔洞內的硒化鋅。

並列摘要


For the manufacture of nano-scale semiconductor crystals, we choose ZnSe compound with direct band gap energy of 2.7eV and succeed confine this semiconductor crystal into a nanoporous channel of mesoporous by the vapor-solid reaction . The method to control size of ZnSe crystals and the characteristic analysis are also discussed. For the purpose of controlling the size of ZnSe nano-scale semiconductor, we manipulate ZnSe ratio, Se percentage, and the diameter of porous. The sizes of controlled samples are use diameter of porus of mesoporous in the range of 3.7 – 8.2 nm, which are measured by the UV-Vis spectrometer. Confinement and characterization of ZnSe nanoparticles inside SBA-15 nanoporous channels are investigated by TEM (transmission electron microscope, PXRD (Powder X-ray Diffraction), BET (N2 adsorption / desorption), and SEM (scanning electron microscope).

參考文獻


13. H. Winkler, A. Birkner, V. Hagen, I. Wolf, R. Schmechel, H. von Seggern, R. A. Fischer, Adv. Mater. 1999, 11, 1444.
65. Q. Zhang, L. Gao, J. Guo, Applied Catalysis B 2000, 26, 207.
31. Z. Zhang, S. Dai, X. Fan, D. A. Blom, S. J. Pennycook, Y. Wei, J. Phys. Chem. B, 2001, 105 (29), 6755 -6758.
77. Z. Zhang, S. Dai, X. Fan, D. A. Blom, S. J. Pennycook, Y. Wei, J. Phys. Chem. B, 2001, 105 (29), 6755 -6758.
2. G. A. Ozin, A. Kuperman, A. Stein, Angew. Chem. Int. Ed. Engl.1989, 28, 359.

延伸閱讀