透過您的圖書館登入
IP:34.229.50.161
  • 學位論文

相互耦合自適應控制器之雙軸壓電驅動系統

Bi-Axial Piezo Driven Planar System Using Cross-Coupling Adaptive Controller

指導教授 : 丁鏞
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在這項研究中,我們使用一種新的方法,交叉耦合控制器( CCC) 暗示的自適 應控制方案,反饋控制器主要來自內部模型控制( IMC) 嵌入指數加權移動平均值 ( EWMA) 方法來構建一個運行結構衍生實施 run-to-run IMC 運行( RTR-IMC) ,設 計一個超聲壓電馬達來處理從機制的缺陷,系統的偏見或不準確的模型繼承非線性因 素驅動雙軸平台的位置反饋和速度反饋控制。基於這樣的輪廓控制方案中,交叉耦合 控制器( CCC) 的任務是改善多軸平台,額外的比例 - 積分( PI) 的前饋控制器 ( IMC-EWMA 帶有 PI)運動輪廓精度溶液中加入增強發達自適應控制方案( IMCEWMA) 的穩健性。死區補償器還包括在控制器以減少所造成的電動機對工作表面 (陶瓷尖端)工作的預載荷的死區。 運動控制系統的任務是在兩個不同的輪廓(圓形和線性)與兩個短行程(100 微米和 1 毫米)和長行程( 10 毫米和 20 毫米)執行,評估和在傳統之間的性能比較差 及運行耦合( IMC-EWMA 和 IMC-EWMA 與 PI) ,並在壓電驅動雙軸平面運動系統最 小化和跟踪誤差輪廓加上控制器( CCC-IMC-EWMA 和 CCC-IMC-EWMA 與 PI) 。 基於該聚集的結果,IMC-EWMA 與比例積分( PI) 的前饋補償器的耦合控制器 ( CCC-IMC-EWMA 帶有 PI) 與在圓形的最小位置誤差及速度的跟踪誤差和更重要的 是在短行程和長行程線性輪廓中達到最小輪廓跟踪誤差。

並列摘要


In this study, a new approach was implemented using Cross-Coupling Controller (CCC) implied to an adaptive control scheme, a feedback controller primarily derived from Internal Model Control (IMC) structure embedded with Exponentially Weighted Moving Average (EWMA) method constructing a run-to-run IMC (RtR-IMC) to form a position feedback and velocity feedback control for a bi-axial platform driven by ultrasonic piezoelectric motor is designed to handle non-linearity factors inherited from mechanism flaw, system bias or model inaccuracy. Based on such contour following motion control scheme, cross-coupling controller (CCC) is tasked to improve the motion contour accuracy of the multi-axis platform, an additional proportional-integral (PI) feedforward controller (IMC-EWMA with PI) was added to enhance the robustness of the developed adaptive control scheme (IMC-EWMA). A deadband compensator is also included in the controller to minimize the deadzone caused by the preload of the motor working against a work surface (ceramic tip). The motion control system is tasked to run in two different contours (circular and linear) with both short-stroke (100 μm and 1 mm) and long-stroke (10 mm and 20 mm) to evaluate and compare the difference in performance between traditional uncoupled (IMC-EWMA and IMCEWMA with PI) and coupled controller (CCC-IMC-EWMA and CCC-IMC-EWMA with PI) in minimizing the tracking and contour errors in a piezo driven biaxial planar motion system. Based on the gathered results, the coupled controller of IMC-EWMA with proportionalintegral (PI) feedforward compensator (CCC-IMC-EWMA with PI) dominated with the least position tracking and velocity tracking error, and more importantly the least contour tracking error in circular and linear contours both short stroke and long stroke.

參考文獻


[1] Y. Wang, F. J. Sun, J. H. Zhu, M. Pang, and C. H. Ru, "Long-Stroke Nanopositioning Stage Driven by Piezoelectric Motor," Journal of Sensors, vol. 2014, 2014.
[2] E. Brousseau, S. Dimov, and D. Pham, "Some recent advances in multi-material micro-and nano-manufacturing," The International Journal of Advanced Manufacturing Technology, vol. 47, pp. 161-180, 2010.
[3] S. Kim and W. Moon, "A micro-pull-off test machine for reliable measurement of adhesive forces on micro/Nano-scale areas," The Journal of Adhesion, vol. 87, pp. 139-153, 2011.
[5] Y. Ting, B. Hou, C. C. Li, C. M. Lin, and C. Y. Chen, "Internal Model Control using EWMA for speed control of wedge-type piezoelectric motors," in IEEE International Conference on Robotics and Biomimetics, 2008. ROBIO 2008. , 2009, pp. 468-473.
[6] D. Vatansever, E. Siores, and T. Shah, Alternative Resources for Renewable Energy: Piezoelectric and Photovoltaic Smart Structures, 2012.

延伸閱讀