透過您的圖書館登入
IP:18.222.182.105
  • 學位論文

以簡便的表面雙離子化策略修飾具高度化學惰性之泛用生醫材料於抵抗生物分子沾黏以及其延伸應用之研究

Facile Zwitterionization Strategies for Troublesome Chemically Inert Biomaterials for Biofouling Resistance and Further Applications

指導教授 : 張雍 費安東
本文將於2025/08/25開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


現今,許多物質都能夠被應用於生物及醫療領域中,像是金屬、陶瓷、高分子…等。上述所提及的材料當中,高分子聚合物具有更廣大及多元的應用範圍。製備生醫材料常見的高分子共聚物包含了-聚四氟乙烯(PTFE)、聚乙烯(PE)、聚偏二氟乙烯(PVDF)以及聚二甲基矽氧烷(PDMS)。由於這些材料具有良好的化學惰性、穩定性及可加工性,使得這些材料常被應用於醫療器材的領域上。然而,這些材料即便具有許多優勢,但這些材料本身的疏水性質卻也成為了在生醫材料使用上一個共同的缺陷。因此,我們通常會將這些疏水性的材料進行改質,使這些材料在生物環境中能夠具有生物相容性或是生物惰性。通常這些基材需要複雜的高能量處理,才能使表面形成可被改質的官能基。在本研究中,我們展現了數個簡易的方法,將難以被修飾的基材進行改質,以提高材料的生物相容

並列摘要


Various kinds of materials such as metals, ceramics, or polymers could be used as biomaterials. Among these kinds of materials, polymeric materials have properties that could be applied in a wider range. Polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polyvinylidene fluoride (PVDF), and polydimethylsiloxane (PDMS) are some examples of widely used polymeric materials in the biomaterial field. These materials are used because of properties such as their chemical inertness, stability, processability, etc. Though these materials boast various advantages, they all share a common drawback which is their hydrophobicity. Hydrophobic biomaterial would usually encounter adverse reactions such as thrombosis due to biofouling specifically from components of our blood. Thus, modification is usually performed for these materials so that they would be more compatible in the biological environment or biologically inert. There are different methodologies for the modification of biomaterials such as coating, grafting, and blending. Among the polymeric biomaterials, PTFE, PDMS, and PVDF could be classified to be troublesome in terms of modification because of the lack of Functionalizable group that would usually aid in modification. Usually these substrates would need complicated high energy treatments to create functionalizable groups on their surface. In this study we are to show different strategies to modify such troublesome substrates using facile methods for the improvement of their biocompatibility.

參考文獻


(1) Ramakrishna, S.; Ramalingam, M.; Kumar, T. S. S.; Soboyejo, W. O. Overview of Biomaterials. In Biomaterials: A Nano Approach; Best, S. M., Ed.; CRC Press: Taylor Francis Group: Florida, USA, 2010; Chapter 1, pp 1-34.
(2) Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010, 51 (23), 5283-5293, DOI: 10.1016/j.polymer.2010.08.022.
(3) Holmlin, R. E.; Chen, X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M. Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir 2001, 17 (9), 2841-2850, DOI: 10.1021/la0015258.
(4) Prime, K. L.; Whitesides, G. M. Adsorption of Proteins onto Surfaces Containing End-Attached Oligo(ethylene oxide): A Model System Using Self-Assembled Monolayers. Journal of the American Chemical Society 1993, 115 (23), 10714-10721, DOI: 10.1021/ja00076a032.
(5) Bearinger, J. P.; Terrettaz, S.; Michel, R.; Tirelli, N.; Vogel, H.; Textor, M.; Hubbell, J. A. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nature Materials 2003, 2 (4), 259-264, DOI: 10.1038/nmat851.

延伸閱讀