透過您的圖書館登入
IP:52.90.211.141
  • 學位論文

不同型態蹲踞垂直跳下肢生物力學研究

The Biomechanical Study of Lower Extremities During Different Squat Jumps

指導教授 : 林德嘉 黃長福
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究之主要目的有二個部分:(一)透過約束踝關節參與跳躍活動程度的設計,了解踝關節不充分蹬伸對跳躍表現的影響,以及踝關節活動的改變對膝、髖關節活動造成的影響。(二)透過不同跳躍表現間下肢生物力學參數的比較,了解造成低跳躍表現的因素。受試對象為10名受過運動專項訓練的體育系男性。以一台Redlake高速攝影機(125Hz;1/625)、一塊Kilster測力板(1250Hz)與Biovision肌電系統(1250Hz)同步,擷取跳躍動作過程中的運動生物力學參數,並透過模式之運算獲得進一步之動力學參數。採用重複量數t-test來檢測:1.『「蹲踞跳」與「束踝蹲踞跳」』間;2.『「高表現蹲踞跳」與「低表現蹲踞跳」』間,是否有差異,統計顯著水準定為α=.05。本研究之主要結果為:一、當踝關節蹬伸活動受到約束後,踝關節蹬伸活動角度由58.01度降至39.10度,踝關節處對蹬伸能量提供的貢獻由76.39焦耳的功降至為59.38焦耳。且膝關節的活動亦受到影響,其蹬伸活動角度由86.44度降至75.85度,且對蹬伸能量提供的貢獻由75.58焦耳的功降至為62.07焦耳。跳躍高度降低5公分。二、低跳躍表現時股骨肌、腓腸肌與比目魚肌肌肉活動時宜出現延遲的現象。而髖節最大角速度時宜的提早與踝關節最大淨肌肉力矩時宜的延遲,影響能量的形成,使得髖關節處對蹬伸能量提供的貢獻由59.39焦耳的功降至為50.57焦耳,踝關節處對蹬伸能量提供的貢獻由76.39焦耳的功降至為67.98焦耳。

並列摘要


There were two purposes in this study. 1. To investigate the effect both on the squat jump performance and on the activities of lower extremities through the design of constraining ankle movement and incomplete extension in the joint. 2. To investigate the factors of the effect by comparing the biomechanical differences between highest and lowest performance in regular squat jump. Ten healthy males were conducted as subjects for this study. Redlake high-speed camera (125Hz;1/625), and Biovision EMG system (1250Hz) were synchronized with Kistler force plate (1250Hz) to collect the biomechanics parameters during the subjects performing squat jump movement. The net muscle joint moments were calculated by using inverse dynamics process. Differences between mean values of jumping performance were evaluated by means of Student's t-test for repeat subjects. Statistical significance was set atα=.05. The results showed that: 1. The range of motion of the ankle was reduced from 58.01° to 39.10° while the ankle was restricted during squat jump. The ankle contributed to the work reduced from 76.39 J to 59.38 J in the instant of take-off. Besides, the range of motion of the knee was reduced from 86.44° to 75.85°. The knee contributed to the work reduced from 75.58 J to 62.07 J in take off activity. 2.During the lowest performance of squat jump the initiate times of EMG signal on m. vasti, m. gastrocentius, and m. soleus were delayed while compare them to those signals on highest performance of squat jump. Similarly, the peak angular velocity of hip joint was appeared earlier than highest performance, and the peak net muscle joint moment was appeared later than highest performance. These phenomena caused the work of hip joint to reduce from 59.39 J to 50.57 J, and the work of ankle joint to reduce from 76.39 J to 67.98 J in take-off activity.

並列關鍵字

squat jump inverse dynamic EMG

參考文獻


王令儀、林德嘉、黃長福、黃國銓。(2002)。不同年齡之男性立定垂直跳躍下肢動作在協調與控制上的差異。體育學報,33,75-86。
Bobbert, M. F., Huijing, P. A., & van Ingen Schenau, G. J. (1986a). A model of the human triceps surae muscle-tendon complex applied to jumping. Journal of Biomechanics, 19(11), 887-898.
Bobbert, M. F., Huijing, P. A., & van Ingen Schenau, G. J. (1986b). An estimation of power output and work done by the human triceps surae muscle-tendon complex in jumping. Journal of Biomechanics, 19(11), 899-906.
Bobbert, M. F., & van Ingen Schenau, G. J. (1988). Coordination in vertical jumping. Journal of Biomechanics, 21(3), 249-262.
Bobbert, M. F., & van Ingen Schenau, G. J. (1990). Mechanical output about the ankle joint in isokinetic plantar flexion and jumping. Medicine and Science in Sports and Exercise, 22(5), 660-668.

被引用紀錄


蔡葉榮(2007)。跆拳道兩種預備站姿跳後踢之生物力學分析〔博士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-0204200815533612
許大偉(2009)。不同的垂直跳測驗方法之生物力學分析〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315162522
陳膺成(2012)。女子排球選手沙地起跳動作之運動生物力學研究〔博士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315310471

延伸閱讀