透過您的圖書館登入
IP:18.218.184.214
  • 學位論文

單次不同強度阻力運動對壓力荷爾蒙及免疫細胞數量之影響

Effects of acute resistance exercise with different intensity on stress hormones and immune cells

指導教授 : 徐孟達

摘要


前言:先前研究表示單次阻力運動可能引起壓力荷爾蒙的反應,進而造成免疫系統 的急性變化。由於許多研究探討不同阻力運動強度對於免疫細胞數量影響上,僅使用不 同強度對應的重複次數,卻忽略了訓練量是強度與次數的乘積,因此,這將造成不同強 度訓練量上有顯著差異,進而導致研究結果不一致的現象。目的:探討相同訓練量下不 同強度阻力運動對壓力荷爾蒙及免疫細胞數量之影響。方法:招募 11 位無阻力運動習 慣的健康男性,以平衡次序法執行兩種不同方案的阻力運動以及不運動處理,受試者在 史密斯機上進行四種動作的阻力運動,其強度分別為高強度處理(80%-8RM 8 下 4 組, hight intensity trial: HIT)與低強度處理(45%-8RM 15 下 4 組, low intensity trial: LIT), 組間休息皆為 90 秒。所有受試者在運動前、運動後立即、運動後 30 分及運動後 60 分 鐘採血,以進行乳酸、皮質固醇及免疫細胞數量分析。所得資料以重複量數二因子變異 數法進行統計分析,以考驗受試者在不同組別之差異。結果:(一)兩種運動處理後立即 採血的白血球總量及淋巴球數量顯著高於無運動處理 (p<.05),兩運動組組間則是無顯 著差異 (p > .05);在運動後立即高強度處理的嗜中性球數量顯著高於無運動處理 (p < .05)。(二)皮質固醇則是在兩個運動處理結束後 30 分與 60 分皆顯著高於無運動處理 (p < .05)。結論:從事單次不同強度的阻力運動不會造成運動者體內壓力荷爾蒙與免疫 細胞數量有所差異,但在運動後恢復期會有短暫免疫空窗期產生,因此,建議從事單次 阻力運動後應多注意相關保養,以避免身體被感染的機會。

並列摘要


Introduction: Previous studies have shown that acute resistance exercise may cause dramatic change in the immune system, may be that exercise causes a response to stress hormones. Since many studies have explored the impact of different resistance exercise intensities on the number of immune cells, they only use the number of repetitions corresponding to different intensities, but ignore that the amount of training is the product of intensity and frequency. Therefore, this will cause significant differences in training volume at different intensities, which will lead to inconsistent research results. Purpose: To explore the effects of equal-volume resistance training with different intensities on stress hormones and the number of immune cells. Methods: Eleven healthy men without resistance exercise habit were recruited to perform two different intensity of resistance exercises and non-exercise control trial (control trial: CT) in the way of counter-balance order method. Subjects performed four types of resistance exercises on the Smith machine, the strengths of which were high-intensity trial (4 sets at 85%-8RM *8, hight intensity trial: HIT) and low-intensity trial (4 sets at 45%-8RM *15, low intensity trial: LIT), the rest between set was 90 seconds. Blood samples were collected at pre--exercise (PRE), post- exercise immediately (POST0), post-exercise 30 minutes (POST30), and post-exercise 60 minutes (POST60) for analysis of lactic acid, cortisol and immune cell numbers. The data were analyzed by repeated measures Two-way ANOVA. Results: 1. The total number of white blood cells (WBCs) and lymphocytes (LYMs) were significantly higher in the HIT and LIT than CT (p < .05) at POST0. But WBCs and LYMs were no significant difference between HIT and LIT (p > .05). The number of neutrophils (NEUs) was significantly higher in HIT than in CT (p < .05). 2.Cortisol was significantly higher in HIT and LIT than CT at POST30 and POST60 (p < .05). Conclusions: Acute resistance exercise with different intensity will not cause the difference on stress hormones and the number of immune cells, but there will be a short immune window in the recovery period after exercise. It’s suggested to pay more attention to relevant maintenance after acute resistance exercise to avoid the chance of infection.

參考文獻


Ashwell, J. D., Lu, F. W., & Vacchio, M. S. (2000). Glucocorticoids in T cell development and function. Annual review of immunology, 18(1), 309-345.
Bermon, S., Philip, P., Candito, M., Ferrari, P., & Dolisi, C. (2001). Effects of strength exercise and training on the natural killer cell counts in elderly humans. Journal of sports medicine and physical fitness, 41(2), 196.
Campbell, J. P., & Turner, J. E. (2018). Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Frontiers in immunology, 9, 648.
Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annu. Rev. Physiol., 67, 259-284.
Crewther, B., Cronin, J., Keogh, J., & Cook, C. (2008). The salivary testosterone and cortisol response to three loading schemes. The Journal of Strength & Conditioning Research, 22(1), 250-255.

延伸閱讀