透過您的圖書館登入
IP:3.138.122.195
  • 學位論文

電腦模擬教學和後設認知鷹架對高中生光學學習表現的影響

Effects of Computer Simulation Instruction and Metacognitive Scaffolding on High School Students' Performance in Optics Learning

指導教授 : 陳素芬 顏妙璇
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


光學在學習和教學中都是一個具有挑戰性的主題,其抽象的概念和對科學模型的錯誤理解是造成學生光學學習困難的重要因素。科學教育學者建議電腦模擬可以促進學生的學習表現,因此我們進行兩項研究來了解電腦模擬的學習環境如何影響學生的概念理解、後設認知監控準確性及改善探究能力。研究一的目的在調查發光射線模型和電腦模擬對學生概念理解和後設認知監控準確性的影響效果。三個高一班級的學生參加了研究一的實驗,其中一個班級(n = 34)參與傳統射線模型的講授課程,另一個班級(n = 33)參與發光射線模型的講授課程,第三個班級(n = 37)則參與電腦模擬結合發光射線模型的課程。透過使用選擇題的前測與後測來比較三個班級學生的概念理解及對概念理解的後設認知監控準確性。研究一的結果顯示發光射線模型改善學生的概念理解,而電腦模擬則有助於提高學生在概念理解的後設認知監控準確性。此外,電腦模擬透過提供3D結構的成像之獨特性促進學生光學概念的理解。研究二的目的是調查引入後設認知鷹架對學生在電腦模擬的環境中進行探究任務之影響。兩個高三班級的學生參加了這項研究,其中一個班級 (n = 33) 參與後設認知鷹架融入電腦模擬的探究課程,另一個班級 (n = 34) 則參與僅有電腦模擬支持的探究課程。透過使用選擇題的前測與後測及學習過程中的學習單來比較兩個班級學生的概念理解、探究思考技能(控制變因策略、數據解釋和圖形理解)、後設認知監控準確性和探究活動的表現。研究二的結果顯示使用不同學習方法之兩個班級的學生,其概念理解和對概念理解的後設認知監控準確性,後測均較前測顯著改善,而將後設認知鷹架融入電腦模擬的探究學習活動則可以改善探究思考技能及對此技能的後設認知監控;特別是在較複雜的探究任務中,引入後設認知鷹架對學習效果的改善更是顯著。這些發現將有助於科學教師發展最佳教學模組來促進學生的光學學習。

並列摘要


Optics is a challenging topic in both learning and instruction. Various abstract concepts and misunderstanding of scientific models are important factors contributing to students’ difficulties in optics learning. Researchers of science education have suggested that computer simulations could enhance students’ learning. Therefore, two studies were conducted to investigate how simulation-based learning environments affect students' conceptual understanding, monitoring accuracy, and improve inquiry abilities. Study 1 aimed to examine the effects of luminous ray model and computer simulations on students’ conceptual understanding and the accuracy of metacognitive monitoring. 10th-grade students in three classes participated in Study 1. One class (n = 34), which received a lecture-based curriculum with the traditional ray model, another class (n = 33), which received a lecture-based curriculum with the luminous ray model, and the other class (n = 37), which received a simulation-based curriculum with the luminous ray model, were compared. Students’ conceptual understanding and monitoring accuracy of conceptual understanding were measured using multiple-choice pre- and post-tests. The results indicated that the luminous ray model had significant impacts on students’ conceptual understanding, whereas computer simulations are helpful in improving students’ monitoring accuracy of conceptual understanding. Furthermore, the unique affordance of computer simulations provided 3D structure of the displayed image to facilitate students’ conceptual understanding. Study 2 aimed to explore the effects of metacognitive scaffolding in simulation-based inquiry. 12th-grade students in two classes participated in this study. One class (n = 33) received simulation-based inquiry combined with metacognitive scaffolding was compared with another class (n = 34), which received only simulation-based inquiry. Students’ conceptual understanding, thinking skills (e.g., the control of variables, data interpretation, and graph comprehension), monitoring accuracy, and inquiry performance were measured using multiple-choice pre- and post-tests and worksheets. The results indicated that students’ conceptual understanding and monitoring accuracy of conceptual understanding in both groups improved significantly from pre-test to post-test. Embedding metacognitive scaffolds in simulation-based inquiry was more conductive to the improvement of thinking skills as well as metacognitive monitoring of thinking skills, especially in the more complex tasks. These findings would help science teachers develop an optimal instructional module to facilitate students’ optics learning.

參考文獻


Abdullah, S., & Shariff, A. (2008). The effects of inquiry-based computer simulation with cooperative learning on scientific thinking and conceptual understanding of gas laws. Eurasia Journal of Mathematics, Science and Technology Education, 4(4), 387-398.
Adadan, E. (2020). Analyzing the role of metacognitive awareness in preservice chemistry teachers' understanding of gas behavior in a multirepresentational instruction setting. Journal of Research in Science Teaching, 57(2), 253-278.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.
Akpinar, E. (2014). The use of interactive computer animations based on POE as a presentation tool in primary science teaching. Journal of Science Education and Technology, 23(4), 527-537.
Akuma, F. V., & Callaghan, R. (2019). A systematic review characterizing and clarifying intrinsic teaching challenges linked to inquiry‐based practical work. Journal of Research in Science Teaching, 56(5), 619-648.

延伸閱讀