透過您的圖書館登入
IP:3.138.204.208
  • 學位論文

滑動粗糙接觸面溫度分佈之研究

Study of Temperature Distribution of Sliding Block with Asperity Surface

指導教授 : 陳新郁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究建立多重波峰粗糙面於不同施加壓力負載、速度、粗糙度及傳 導係數下,上滑塊波峰粗糙面之溫度分析情形以及最大溫升參數變化。並且探討最大溫升參數、各波峰最大溫升參數差及波峰與波谷間最大溫升參數差的結果。數值分析結果顯示,上滑塊的最大溫升參數發生於中央波峰的位置,並非為兩光滑表面滑動的前端處。此最大溫升參數隨著(1)施加壓力負載(2)速度及(3)粗糙度增加而有增加的趨勢,並且在接觸點區外最大溫升參數急速下降,因此導致波峰與波谷間有相當大的溫升參數差。在五個波鋒接觸情況下,中間波鋒的最大溫升參數略大於兩側波鋒,此最大溫升參數亦因施加壓力負載、速度及傳導係數之改變而有不同情況。表面粗糙度越大,最大溫升參數亦隨之增大但其變化差距並不大。此一粗糙波峰接觸溫度分析結果,將對於微機電系統元件之功效,及生化系統界面反應機制有所助益。

關鍵字

粗糙面 粗糙度 溫升參數

並列摘要


In this study, a thermal model is developed for asperity sliding contact under various loads, sliding velocities, and surface roughness. The temperature distributions along the contact profile are shown for perfectly insulated thermal condition on non-contact surfaces. Results show that maximum temperature of each peak does not locate at the symmetry spot of the contact area. The maximum temperature is found at the proximity area behind symmetry axis (the reverse sliding direction). In addition, the maximum temperature is increased as the loads or sliding velocities increased. The temperature profile decreases as the distance to the symmetry axis increased. And then decreases dramatically at the non-contact area. For a particular five peaks contact model, the maximum temperature at the central peak is slightly larger than the others. The phenomena become obviously as the loads or sliding velocities are increased. As the value of surface roughness is increased, the maximum temperature at each peak is increased as well. However, the difference is not significant. The simulation results of this asperity sliding contact model are able to provide essential information for the components of micro-electrical mechanical system and biochemical reaction mechanism.

參考文獻


[3] Archard, J. F. :The temperature of rubbing surfaces, Wear, vol. 2, pp. 438-455, 1959.
[4] Geeim, B.; Winer, W. O. :Transient Temperatures in the Vicinity of an Asperity Contact. ASME J. Tribology, vol. 107, pp. 333-342, 1985.
[5] Wang, S.;Komvopoulos, K. :A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I –Elastic Contact and Heat Transfer Analysis, ASME J. Tribology, vol. 116, pp. 812-822, 1994.
[6] Wang, S.; Komvopoulos, K. :A Fractal Theory of the lnterfacial Temperature Distribution in the Slow Sliding Regime: Part II –Multiple Do-mains. Elasto-plastic Contacts and Applications, ASME J. Tribology, vol.
116. pp. 824-832, 1994.

被引用紀錄


鄭文清(2016)。不同營造工地安全文化認知差異探討-以台南與高雄工地為例〔碩士論文,中山醫學大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0003-1308201622043000

延伸閱讀