透過您的圖書館登入
IP:18.226.93.209
  • 學位論文

氧化鋅奈米晶體引入乙氧基化聚乙烯亞胺/聚芴電解 質作為電子傳輸層以應用於含銫鈣鈦礦發光元件

ZnO nanocrystals incorporating PEIE/polyfluorene electrolyte as electron transport layers for cesium-containing perovskite light-emitting devices

指導教授 : 楊勝雄

摘要


本研究提出以氧化鋅奈米晶體(ZnO NCs)作為電子傳輸層搭配溴化銫鉛(CsPbBr3)薄膜作為發光層之反結構鈣鈦礦發光元件。乙氧基化聚乙烯亞胺(polyethyleneimine ethoxylated, PEIE)與含有六氟磷酸根三甲基銨之聚芴電解質(取名為P2-PF6)引入ZnO奈米晶體與CsPbBr3薄膜之間以提升元件電子注入。PEIE/P2-PF6雙層的引入有效地改善CsPbBr3薄膜的覆蓋率以及表面型態以減少鈣鈦礦發光元件的漏電流。同時,經優化後的CsPbBr3薄膜具有更佳的光激發光,其歸因於PEIE/ P2-PF6雙層的抗淬滅能力以及增加的載子生命週期。於此,使用聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺) (TFB)作為電洞傳輸層,製作結構為ITO/ZnO NCs/PEIE/P2-PF6/CsPbBr3 film/TFB/Au之鈣鈦礦發光元件。引入PEIE/P2-PF6鈣鈦礦發光元件之驅動電壓為2.8 V,最大亮度為3,927 cd/m2,而最大電流效率為0.2 cd/A,均明顯優於不具PEIE/P2-PF6雙層之元件。

並列摘要


In this work, we demonstrate inverted perovskite light-emitting devices (PeLEDs) based on ZnO nanocrystals (NCs) and cesium lead bromide (CsPbBr3) film as the electron transport and emission layers, respectively. A polyethyleneimine ethoxylated (PEIE) and/or an ionic polyfluorene electrolyte containing trimethylammonium hexafluorophosphate groups (namely P2-PF6) were introduced between ZnO NCs and CsPbBr3 film to enhance electron injection. The introduction of the PEIE/P2-PF6 bilayer can effectively improve CsPbBr3 coverage and morphology, thereby reducing current leakage in PeLEDs. Meanwhile, the improved CsPbBr3 film showed better photoluminescence, owing to anti-quenching capability of the PEIE/P2-PF6 and prolonged carrier lifetime. Herein, the PeLEDs with the structure ITO/ZnO NCs/ PEIE/P2-PF6/CsPbBr3 film/poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine) (TFB)/Au were fabricated, employing TFB as the hole transport layer. The PeLED based on the PEIE/P2-PF6 showed a turn-on voltage of 2.8 V, a max luminance of 3,927 cd/m2 and max current efficiency of 0.2 cd/A that was significantly higher than those without PEIE/P2-PF6 bilayer.

並列關鍵字

perovskite PeLED ZnO PEIE polyfluorene electrolyte

參考文獻


[1] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982–988.
[2] Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2016, 7, 167–172.
[3] Wang, S. P.; Chang, C. K.; Yang, S. H.; Chang, C. Y.; Chao, Y. C. Mater. Res. Express. 2018, 5, 015037.
[4] Zhang, X.; Liu, H.; Wang, W.; Zhang, J.; Xu, B.; Karen, K. L.; Zheng, Y.; Liu, S.; Chen, S.; Wang, K.; Sun, X. W. Adv. Mater. 2017, 29, 1606405.
[5] Wang, Y.; Zhu, Y.; Huang, J.; Cai, J.; Zhu, J.; Yang, X.; Shen, J.; Jiang, H.; Li, C. J. Phys. Chem. Lett. 2016, 7, 4253–4258.

延伸閱讀