透過您的圖書館登入
IP:18.117.196.217
  • 學位論文

受限於陽極氧化鋁模板奈米孔洞內之聚3-己基噻吩的特性分析

Characteristic Analysis of Poly(3-hexylthiophene) Confined in the Nanoporous of Anodic Aluminum Oxide Templates

指導教授 : 陳俊太

摘要


近年來,高分子奈米材料的相關研究蓬勃發展,其中在有機共軛高分子當中,以聚3-己基噻吩 (poly(3-hexylthiophene), P3HT) 的研究最受到矚目,P3HT具有良好的結晶性與光電特性,再加上本身自組裝的特性,能夠形成規則之奈米結構,具有相當大的研究潛力,目前P3HT已經被廣泛應用於共軛高分子太陽能電池 (conjugated polymer solar cells, CPSC) 以及有機場效電晶體 (organic field-effect transistors, OFETs) 等光學元件中。雖然目前有相當多針對P3HT的相關研究,但是如何控制P3HT奈米結構與特性仍是一個很大的挑戰。本研究以模板法 (template method) 的技術為基礎,以得到P3HT的奈米結構,除此之外,藉由控制製備P3HT奈米結構的方法及實驗條件,可控制P3HT奈米結構之形貌和特性。 本論文總共分成八個章節,首先第一章是閱讀本論文所需要知道的背景知識,包括陽極氧化鋁 (Anodic aluminu oxide, AAO) 模板介紹、利用模板法製備奈米結構之方法、以及P3HT的簡介。第二章主要是P3HT奈米線製備方法的文獻回顧,包含了傳統的結晶法及新興的模板法等相關研究。第三章的部分,介紹論文中所使用的高分子材料、有機溶劑、以及使用實驗儀器之原理及樣品製備之方法。 第四到第六章則為三個主題的研究。首先,第一主題 (第四章) 是藉由溶劑蒸氣退火法將P3HT進入AAO模板孔洞中,製備出P3HT奈米線,同時也以溶液濕潤法製備P3HT奈米線,並對奈米線特性進行比較,探討P3HT奈米線之形貌、結晶性、及結晶方向。 接著第二個主題 (第五章) 承接第一個主題的工作,上部分主要透過溶劑蒸氣退火法成功地製備出P3HT奈米線,而本章節一樣以溶劑退火法為基礎,進行P3HT奈米線之製備,但藉由改變實驗中所使用的溶劑,使P3HT奈米線在不同溶劑蒸氣環境中進行製備,探討以不同溶劑製備之P3HT奈米線的形貌及特性差異,接著也能夠利用不同孔徑大小的AAO模板 (30 nm和60 nm) 製備出不同大小的P3HT奈米線。 在第一個主題及第二個主題,我們成功地藉由溶劑蒸氣退火法製備出P3HT奈米線,而於第三個主題 (第六章) 的實驗,我們發展出新的製程方法進行P3HT奈米結構之製備,稱作熱溶液濕潤法,結合了傳統晶鬚法 (whisker method) 以及新興的溶液濕潤法 (solution-wetting method) 的原理和步驟,利用此方法成功地製備出P3HT奈米結構,再以掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 拍攝並觀測其形貌。 第七章則是對整篇論文研究作個總結,並探討未來工作可能的發展,包含奈米線之應用、製備高結晶之奈米線、以及探討模板之結晶機制。第八章則是論文中引用之參考文獻。

並列摘要


Poly(3-hexylthiophene) (P3HT) has attracted great attention recently because of their unique optoelectronic properties and self-assembly behavior, which can form well-ordered nanostructures. It has also been widely applied to optoelectronic devices such as conjugated polymer solar cells (CPSCs) and organic field-effect transistors (OFETs). Although there have been many studies on P3HT, it is still a great challenge to control the nanostructures and properties of P3HT. In this study, we investigate the fabrication of P3HT nanostructures confined in the nanopores of anodic aluminum oxide(AAO) templates. The morphologies and properties of P3HT nanostructures can be controlled by changing the preparation methods and experimental conditions. This thesis is divided into 8 chapters. In Chapter 1, we first introduce the badsic concept of the fabrication of AAO templates, the template method, and the P3HT material. In Chapter 2, the papers which are related to the fabrication of P3HT nanowires are reviewed. In Chapter 3, the experimental materials, solvents, and instruments used in this work are listed. From Chapter 4 to Chapter 6, we discuss the experimental results of three topics. In the first topic (Chapter 4), we study the fabrication of P3HT nanowires by solvent-annealing-induced nanowetting in template (SAINT) using AAO templates. The morphologies and properties of the P3HT nanowires are also characterized by the instruments and compared to those prepared by the solution wetting method. It is found that the morphologies and properties of the P3HT nanowires are affected by the preparation methods. In the second topic (Chapter 5), following the first topic, we investigate the fabrication of P3HT nanowires using different solvent vapors by SAINT. The morphologies and properties of the P3HT nanowires can be controlled by changing the solvent vapors. The result shows that the solubility of solvent is the main factor for the properties of the P3HT nanowires. In the third topic (Chapter 6), we devlope a new method to fabricate P3HT nanostructures using the AAO templates. The new method combines the process of the whisker method and the solution-wetting method, and we call it the hot solution-wetting method. The P3HT solution is first heated and dissolved in the marginal solvent (p-xylene). After the hot solution is dropped on the AAO templates, P3HT nanowires can be formed by the self-assembly process. In Chapter 7, we summarize all experimental results and propose possible future works. In Chapter 8, the references cited in this thesis are listed.

參考文獻


50.Byun, J.; Kim, Y.; Jeon, G.; Kim, J. K. Macromolecules 2011, 44, (21), 8558-8562.
38.Zhao, Y.; Shao, S. Y.; Xie, Z. Y.; Geng, Y. H.; Wang, L. X. J. Phys. Chem. C 2009, 113, (39), 17235-17239.
63.Chen, C. Y.; Chan, S. H.; Li, J. Y.; Wu, K. H.; Chen, H. L.; Chen, J. H.; Huang, W. Y.; Chen, S. A. Macromolecules 2010, 43, (17), 7305-7311.
55.Huang, L. B.; Xu, Z. X.; Chen, X. F.; Tian, W.; Han, S. T.; Zhou, Y.; Xu, J. J.; Yang, X. B.; Roy, V. A. L. ACS Appl. Mater. Interfaces 2014, 6, (15), 11874-11881.
11.Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, (11), 5868-5923.

延伸閱讀