透過您的圖書館登入
IP:3.137.198.239
  • 學位論文

假形高電子遷移率電晶體之溫度變化大訊號模型

Temperature dependence of large-signal model of pHEMTs

指導教授 : 辛裕明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著微波技術的日趨重要,對主動元件的要求愈來愈高,而砷化鎵假形高電子遷移率電晶體(pHEMT)在Ⅲ-Ⅴ族半導體中是一個很重要的元件,主要應用在軍事和商業通訊的毫米波和微波頻率上。在設計單晶微波積體電路(MMIC)時,準確的電晶體模型是很重要的,它能精確的提供元件直流和高頻特性,對設計時有極大的幫助。 本論文包含了砷化鎵假形高電子遷移率電晶體的小訊號和大訊號模型萃取技術。利用Yang-Long直流、Cold FET高頻量測方法,萃取電晶體外部寄生元件參數,再經由矩陣轉換求得內部本質元件參數,進而建立電晶體小訊號等效模型。再者,利用EEHEMT1模型及其溫度參數來建立一個具有可預測溫度變化的等效模型,此大訊號模型無論在室溫下或高溫下(125 °C)的直流與高頻特性模擬都具有良好的準確度。

並列摘要


GaAs pHEMT device is one of the most important semiconductor devices for military and commercial communication applications at millimeter-wave frequencies. It is very important to accurately model the dc and high frequency characteristics of the transistors before you design a MMIC circuit composed of these transistors. This thesis contains both the small-signal and large-signal modeling methods of GaAs pHEMTs. Utilizing Yang-Long DC measurement and Cold FET high frequency measurement method, extrinsic parameters of device can be extracted. And then using matrix operation to obtain intrinsic parameters of device, and finally set up the small-signal equivalent model of transistor. Moreover, using EEHEMT1 model and related temperature parameters, the equivalent model with divinable characteristics of device at variable temperature can be established. This large signal model can fits well to measured data, including DC and high frequency characteristics, at room temperature and high temperature (125 °C).

並列關鍵字

device model temperature hetero-junction pHEMT

參考文獻


[2] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiexmann, “Electron mobilities in modulation-doped semiconductor heterojunction superlattices, ” Appl. Phys. Lett., vol. 33, pp. 665-667, 1 October, 1978.
[3] K. Hirakawa, H. Sasaki, and J. Yoshion, Appl. Phys. Lett., vol. 45, p253, 1984.
[4] A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, W. Kopp, H. Morkoc, and K. R. Gleason, “Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field effect transistors,” IEEE Trans. Electron Devices, vol 33, pp. 564-571, 1986.
[5] J. W. Matthews and A. E. Blakesless, “Defects in epitaxial multilayers,” Journal of Crystal Growth, vol. 27, p. 118, 1974.
[7] S. M. Sze, “High-speed semiconductor devices,” John Wiley, 1990.

被引用紀錄


林文奕(2008)。pHEMTs小訊號和雜訊模型與其元件尺寸關係〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0207200917353534
丁偉修(2017)。Ku-band及K-band低雜訊放大器之設計〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-2407201717110900

延伸閱讀