透過您的圖書館登入
IP:3.136.25.68
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文以輪型機器人為基礎並加裝跳躍裝置,讓機器人可使用輪型姿態穩定快速的移動,並使用跳躍的方式躍過障礙物,改善傳統陸上型機器人的機動性。在機構方面,我們設計了一個六連桿彈簧式跳躍機構,此跳躍機構可以在任何壓縮量下進行釋放,使機器人可以不同的高度跳躍。另外我們設計四連桿連動機構,當跳躍機構在壓縮的同時會連動輪子的相對位置,可修正機器人的起跳仰角至最佳角度。我們以3D printer印製出機器人本體,因為塑料的彈性可在機器人摔落時吸收撞擊,避免摔壞。在控制方面,我們使用智慧型手機或筆電,以藍芽對機器人進行遙控,可命令機器人執行前進、後退、轉向與跳躍的功能。透過感測器可得知機器人的仰角、角速度和方位變化,並可讓機器人自主修正方位與仰角。當機器人偵測到方位偏移時,控制輪子馬達修正方位,若機器人上下翻倒時便執行立即復位,而在機器人移動時則使用模糊控制維持機器人的仰角變化,避免機器人翻覆。經由實驗結果證明,新提出的跳躍機構與連動機構,成功實現一個具有靈活移動及跳躍功能的機器人的設計與製作。

並列摘要


In this thesis, based on wheeled- robot, we installed a jumping device on the robot such that the robot can move fast and stably, and jump over obstacle when obstacles exist. The jumping function has improved the mobility of traditional land-based robot. At the structure aspect, we also designed a six-rod spring-hopping mechanism, this mechanism can jump with different heights corresponding to deferent compressions. In addition, we designed a four-link mechanism for the connection between the spring and wheels, such that the spring compression mechanism can interlock wheels to have a nice jumping elevation angle for the robot. We used 3D printer to print out the robot body, because the elastic plastic can absorb the impact when the robot drops to the ground without broken. In control aspect, smart phones or laptop with blue-tooth is used to remote control the robot to execute the commands such as forward, backward, turning and jumping. Utilizing the 10-axis MEMS sensor, the elevation angle, angular velocity change and azimuth of the robot can be measure. When the robot moves direction is incorrect, the orientation can be adjusted autonomously. If the robot moves fast, it may turnover. Therefore, the fuzzy control is used to maintain the stability of the moving attitude. When the robot stops suddenly, the robot will turnover definitely, but it can recover its attitude immediately. The experimental results show that the robot has successful moving and jumping functions because of our special design and fabrication.

並列關鍵字

jumping robot wheeled robot fuzzy control

參考文獻


[3] U. Scarfogliero, C. Stefanini, and P. Dario, “Design and development of the long-jumping ”grillo” mini robot,” in IEEE International Conference on Robotics and Automation, 2007, pp. 467–472.
[5] R. Armour, K. Paskins, A. Bowyer, J. F. V. Vincent, and W. Megill,“Jumping robots: a biomimetic solution to locomotion across rough terrain,” Bioinspiratoin and Biomimetics Journal, vol. 2, pp. 65–82, 2007.
[6] H. T. Sun, G. M. Song, J. Zhang, Z. Li, Y. J. Yin, A. C. Shao, J. Y. Zhan, M. J. Xu, and Z. Zhang, ”Design of a tumbling robot that jumps and tumbles for rough terrain”, in IEEE Int. Conf. on Ind. Electron., Taipei, May, 2013, pp.1-6.
[7] M. A. Woodward and M. Sitti, “Design of a miniature integrated multi-modal jumping and gliding robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, Sep., 2011, pp. 556-561.
[8] J. Burdick and P. Fiorini,“Minimalist jumping robots for celestial exploration,” International Journal of Robotics Research, vol. 22, no. 7, pp. 653-674, 2003.

延伸閱讀