透過您的圖書館登入
IP:18.191.195.110
  • 學位論文

應用磁性粒子於微流體裝置之可逆接合

指導教授 : 曹嘉文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究成功的證明使用氧化鐵磁性粒子與二甲基矽氧烷(PDMS)製作出磁性PDMS裝置,其為一種簡單製作且可以達到高強度的可逆磁性接合方法;在此提出了兩種磁性PDMS裝置,包括不可光學檢測的暗視野裝置與可光學檢測的明視野裝置。 研究顯示,暗視野裝置製作上類似標準的PDMS鑄造,較不受微流道幾何形狀的影響;而明視野裝置澆鑄性能與微流道幾何圖形高度有關,實驗針對微流道的佈局進行了詳細的研究,探討PDMS墊塊層與微模具基板之間的間隙大小對於製作明視野裝置的相關性。磁性PDMS裝置接合強度測試中,證明在裝置底部增加一層PDMS薄膜層可以有效改善表面粗糙度,並且有效的提升磁性PDMS的可逆磁性接合強度。測試結果顯示,有PDMS薄膜的暗視野裝置最佳接合強度為110 KPa;而有PDMS薄膜的明視野裝置最佳接合強度為81 KPa。

關鍵字

可逆接合 微流體裝置 磁性

並列摘要


Iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite was successfully demonstrated as a simple and high-strength reversible magnetic bonding method in this study. Dark-field (optical inspection impossible) and light-field (optical inspection possible) MMPs-PDMS casting were presented. This study showed that microchannel geometries have limited influence on dark-field casting which is similar to standard PDMS casting. Light-field casting performance was highly related to microchannel geometries. Effects of the microchannel layout, and the gap between the cover-PDMS layer and micromold substrate were detail investigated. MMPs-PDMS magnetic bonding experiments showed that thin PDMS film incorporating an MMPs-PDMS layer can effectively reduce surface roughness and enhance MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated dark-field MMPs-PDMS device exhibited the greatest bonding strength of 110 KPa. For a light-field MMPs-PDMS device with a thin PDMS film, a magnetic bonding strength of 81 KPa can be achieved.

並列關鍵字

無資料

參考文獻


[3] S. C. Jakeway, A. J. de Mello, and E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius Journal of Analytical Chemistry, vol. 366, pp. 525-539, Mar-Apr 2000.
[4] A. Alrifaiy, O. A. Lindahl, and K. Ramser, "Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering," Polymers, vol. 4, pp. 1349-1398, Sep 2012.
[5] L. Nan, Z. D. Jiang, and X. Y. Wei, "Emerging microfluidic devices for cell lysis: a review," Lab on a Chip, vol. 14, pp. 1060-1073, 2014.
[7] C. Iliescu, H. Taylor, M. Avram, J. M. Miao, and S. Franssila, "A practical guide for the fabrication of microfluidic devices using glass and silicon," Biomicrofluidics, vol. 6, Mar 2012.
[8] H. Becker and L. E. Locascio, "Polymer microfluidic devices," Talanta, vol. 56, pp. 267-287, Feb 11 2002.

延伸閱讀