透過您的圖書館登入
IP:18.221.239.148
  • 學位論文

具三維光路之光連接發射端模組

Transmitting Part of Optical Interconnect Module with Three-Dimensional Optical Path

指導教授 : 伍茂仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文中,提出並驗證「具三維光路之光連接發射端模組」之研究。此模組架構是採用雷射與波導異側之架構,由面射型雷射出光穿透厚度為 500 μm的 SOI基板,再經由 45°矽基微反射面進入波導。藉由此方式可分別獨立電子元件與光子元件的製程,又可將電子元件與光電調製器、波導等光子元件整合,以達到光電模組高積體化、高效能的表現。本模組電子元件層包含高頻傳輸線、面射型雷射和金錫焊料;光子元件層則包含 45°微反射面和梯形脊狀波導。利用雙面對準之機制將電子元件層和光子元件層整合至 SOI矽晶圓兩側。 而模組末端乃利用多模光纖作為接收與傳輸。其光纖與模組間光學耦合效率為 -8.09 dB,而效率損耗 1 dB時在水平方向與垂直方向之位移容忍值分別為 30 μm及 19 μm。對於高頻研究方面,本研究採用低阻值 (1 - 10 ohm-cm)之 SOI矽晶圓製作高頻傳輸線並量測其高頻傳輸特性。此模組在 2.5 Gbps的操作速度時,上升與下降時間差異並不大;眼圖訊號在其眼睛邊際 (Eye margin)內是非常乾淨,且眼高及眼寬分別為 34 mV與 350 ps,由此我們可再次驗證此模組對於 2.5 Gbps的訊號傳遞是具一定可行性。

關鍵字

三維 光連接

並列摘要


In this thesis, transmitting part of optical interconnect module with three-dimensional optical Path is proposed. In this module, the laser and waveguide are on the different sides of SOI. The light is emitted from vertical cavity surface emitting laser (VCSEL). The light of laser passes through 500μm SOI and couples into ridge waveguide by 45 degree micro-reflector. By this way, the fabrication of electronic-device part and photonic-device part could be separated. The electronic-device, optical modulators, and waveguide could be combined. Therefore, photoelectric module could be highly density integrated and efficient energy. This module contains electronic-device layer and photonic-device layer. The high-frequency transmission line, VCSEL, and Au/Sn bonding pad are fabricated on the electronic-device layer. The 45 degree micro-reflector and trapezoidal ridge waveguide are fabricated on the photonic-device layer. Using the double-side alignment technology to combine the electronic-device layer and photonic-device layer on the SOI front and back sides. To assess optical characteristic of optical connector, the multi-mode fiber is used to measure the optical level and degradation 1-dB tolerance of module in this research. The optical coupling is -8.09dB. The degradation 1-dB tolerances are 30μm and 19μm. Using low-resistivity SOI wafer (1 - 10 ohm-cm) to confirm the high frequency of this module and fabricate transmission line. This module in the operating speed of 2.5 Gbps, the rise and fall time is not much difference; eye signals in the eye margin (Eye margin) is very clean inside, and the eye height and eye width were 34 mV and 350 ps, thus, we can once again verify this module for the 2.5 Gbps signal transmission is a certain feasible.

參考文獻


14. 張育誠, “微型光學讀取頭之元件,” (中央大學光電所碩士論文, 台灣, 2003)
7. Berkehan Ciftcioglu, Rebecca Berman, Jian Zhang, Zach Darling, Shang Wang, Jianyun Hu, Jing Xue, Alok Garg, Manish Jain, Ioannis Savidis, Duncan Moore, Michael Huang, Eby G. Friedman, Gary Wicks, and Hui Wu, “A 3-D Integrated Intrachip Free-Space Optical Interconnect for Many-Core Chips”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO. 3, FEBRUARY 1, 2011
1. Jun Sakaguchi1, Yoshinari Awaji1, Naoya Wada1, Atsushi Kanno1, Tetsuya Kawanishi1, Tetsuya Hayashi2, Toshiki Taru2, Tetsuya Kobayashi3, Masayuki Watanabe3,“109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” OSA/OFC/NFOEC 2011, PDPB6
3. R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26(14), 2136-2141 (2008).
4. P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9(2), 624-635 (2003).

延伸閱讀