透過您的圖書館登入
IP:18.118.184.237
  • 學位論文

連續光在氯鋁酞青素溶於乙醇、N-甲基吡咯烷酮以及兩者混合物中的熱透鏡效應研究

Study of Thermal Lensing Effects Induced in Chloroaluminum Phthalocyanine Dissolved in Ethanol, 1-Methyl-2-Pyrrolidone and Their Mixture by CW Laser Light

指導教授 : 魏台輝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文以CW He-Ne雷射為光源,用Z-scan技術調查氯鋁酞青素(Chloroaluminum Phthalocyanine,簡稱ClAlPc)分別溶於乙醇(簡稱ClAlPc-ethanol)、N-甲基吡咯烷酮(簡稱ClAlPc-NMP)和兩者混合物(簡稱ClAlPc-ethanol-NMP)等三種溶液的熱透鏡效應(thermal lensing effect)。以上三種溶液都是二元系統(ethanol和NMP混和溶液當作一種溶液),在本研究中三種溶液的溶質濃度都被調整為7.0*10^-4 M且都被置於1 mm厚的石英槽中。 對屬於流體靜力學系統(hydrostatic system)的單一成分樣品而言,其熱力學座標為壓力、密度以及溫度,其中獨立者有二,在此我們取密度與溫度為獨立的熱力學座標,並將狀態函數折射率n當成密度與溫度的函數。在這樣的樣品中,熱透鏡效應的生成是(i)藉吸收雷射光而造成樣品的激發,然後藉非輻射性鬆弛以及純熱擴散(thermal diffusivity)效應而使樣品溫度改變(ii)藉溫度梯度驅動熱聲波而使樣品密度改變,以及(iii)藉溫度變化與密度變化合起來造成n的改變delta(n)。在此,我們稱此delta(n)為熱致折射率改變。因為delta(n)在光斑中各徑向位置並不相等,故會造成熱透鏡效應。當光斑中心處的delta(n)值大於光斑邊緣處者時,它會造成正透鏡效應;反之,當光斑邊緣處的delta(n)值大於光斑中心處者時,它會造成負透鏡效應。 對屬於流體靜力學系統(hydrostatic system)的二元成分樣品而言,其熱力學座標為壓力、密度(代表二元混和溶劑密度)、溫度、wA、wB、chemical potential(A)、chemical potential(B),( wA、wB代表為A與B成分的質量分率),其中獨立者有四,在此我們取密度、溫度、wA、chemical potential(A)為獨立的熱力學座標。在這樣的樣品中,熱透鏡效應的生成是除了要考慮溫度變化與密度變化的貢獻外,還需要考慮(i)藉吸收雷射光而造成樣品的激發,然後藉非輻射性鬆弛以及純熱擴散效應而使樣品溫度改變,(ii)藉溫度梯度驅動熱聲波而使樣品密度改變,(iii)藉溫度梯度驅動熱擴散(thermal diffusion)而使分子從高溫往低溫移動或由低溫遷往高溫區域,(iv)藉分子濃度不均驅動質量擴散(mass diffusion)而使分子從高濃度往低濃度擴散,(v)藉質熱擴散與質量擴散而使樣品質量分率改變,以及(vi)藉溫度變化、密度變化和質量分率變化合起來造成n的改變,在此,我們稱此delta(n)為二元系統的熱致折射率改變。 從實驗的觀察和分析,逐一考慮開孔、閉孔和divided Z-scan訊號隨時間增加而改變得情況,探討熱透鏡隨時間變化情況。針對溶質對熱效應的貢獻,我們將透過熱擴散和質量擴散加以解釋。 在本論文之前,大家最常用以調查使二元系統中熱擴散與質量擴散用的實驗方法為熱擴散致瑞利散射(簡稱TDFRS)技術。TDFRS技術是由Pohl等人於1970年提出,在此技術中,我們只能量出二元系統中各別成分的熱擴散係數、質量擴散係數和索雷特係數ST(Soret coefficient)的大小,卻不能決定它們的正負號。1990年代期間,Kohler等人在傳統TDFRS技術中加入外差探測(OHD)系統,使成為更新版的TDFRS技術[1],以下我們稱此更新版的技術為OHD-TDFRS。因為OHD-TDFRS不但能量測熱擴散係數、質量擴散係數以及ST的大小,同時能決定它們的正負號,1990年代之後,有關熱擴散與質量擴散的研究變得極為蓬勃,且進展地非常快速。 雖然Z-scan的功能與OHD-TDFRS相近,但卻鮮少被用以調查二元系統的熱擴散與質量擴散性質。透過這研究我們希望能將Z-scan.發展成為另一調查熱擴散與質量擴散的技術。 關鍵字:熱透鏡效應、CW He-Ne雷射、Z-scan、氯鋁酞青素。

並列摘要


We investigate the thermal lensing effects induced in Chloroaluminum Phthalocyanine Dissolved in Ethanol, 1-methyl-2-pyrrolidone and their Mixture using the Z-scan technique with a CW He-Ne laser. These three solutions were all filled in 1 mm thick cuvettes at equal concentrations (7.0*10^-4 M). For a hydrostatic system containing one component, the thermal lensing effect evolves with time in the sequences: (i) spatially non-uniform temperature change induced by photo excitation followed by non-radiative relaxation (heating effect) and thermal diffusivity, (ii) density changes driven by the temperature gradient (iii) refractive index change induced by temperature change and density changes which follows the mathematical formalism. Here delta(n) denotes the thermally induced refractive index change. When delta(n) at the peripheral is less than that at the beam center, it renders a positive lensing effect; contrarily, it results in a negative lensing effect. For a hydrostatic system containing two component, the thermal lensing effect evolves with time in the sequences:(i) spatially non-uniform temperature change induced by photo excitation followed by non-radiative relaxation (heating effect) and thermal diffusivity,(ii) density changes driven by the temperature gradient (iii) thermal diffusion induced by temperature-gradient,(iv) mass diffusion induced by molecule concentration unevenness,(v) mole fraction changes induced by thermal and mass diffusion,(vi) refractive index change induced by temperature change , density changes and CA.which follows the mathematical formalism. Here delta(n) denotes the thermally induced refractive index change. From theoretical analysis of experiments, we found that the signals of open aperture, closed aperture and divided Z-scans change with time. Accordingly, we incorporate thermal and mass diffusions into the thermal lensing effect. In the following, we introduce the theory in Chapter 2, the experimental in Chapter 3, the results and discussion in Chapter 4, and future work in Chapter 5. Keyword: thermal lensing effect, CW He-Ne laser, Z-scan, Chloroaluminum Phthalocyanine.

並列關鍵字

thermal lensing effect CW He-Ne laser Z-scan

參考文獻


[13] Che-Kai Chang, Chang-Chi Leu, Tai-Huei Wei, Sidney Yang, Tzer-Hsiang Huang, Yinglin Song, Chem. Phys. Lett. 484, pp. 225-230 (2010).
[8] T.H. Wei, T.H. Huang, H.D. Lin, and S.H. Lin, Appl. Phys. Lett. 67(16), 2266-8(1995); Opt. and Quan. Elec. 28, 1495-1508(1996).
[9] T.H. Wei, T.H. Huang,and T.C.Wen,chem. Phys.Lett.314,403(1999).
[10] T.H. Wei, T.H. Huang,and J.K. Hu, J Chem. Phys. 116 2536 (2002).
[1] S.Wiegand, J. Phys:Condens. Matter 16, R357 (2004)

延伸閱讀