透過您的圖書館登入
IP:18.225.255.134
  • 學位論文

室內聲源寬廣度與大腦聽覺誘發電位之關聯性

Examination on the relationship between apparent source width and auditory evoked potential from the cerebral hemispheres

指導教授 : 陳炯堯
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


Morimoto(1989)在廳堂聲音空間印象(spatial impression) 研究中提出聆聽包被感(listening envelopment,LEV)與聲源寬廣度(apparent source width,ASW)兩種要素,是決定一般演奏會廳堂空間感的必要條件。而聲源寬廣度(ASW)的聲音印象通常由直達音與早期反射音來構成(Morimoto,1989)而包被感是由迴響元素來形成。 Ando(1985)所提出的舞台上的聲源訊號到聆聽者大腦構成的大腦聽覺路徑(auditory path),可以充分說明中樞神經系統是如何處理聽覺神經末梢區域形成的神經脈衝,我們可以依據從大腦皮質上的腦波反應來觀察神經處理聲音訊號過程的反應特徵進行歸納。本研究藉由改變空間之雙耳互函數級數(magnitude of interaural cross-correlation function,IACC),考察不同的室內聲源寬廣度(ASW)反應和大腦聽覺慢性頭頂反應(slow vertex response,SVR)受聲源刺激所產生之變化做逐一比較,並試著建立一個客觀的生理聲學設計方法。 研究結果發現:1. 在心理實驗中藉由改變雙耳互函數級數(IACC),聲源寬廣度的心理量化值之排序為:ASW(IACC=0.56)=0.45>ASW(IACC=0.68)=0.03>ASW(IACC=0.35)=-0.16>ASW(IACC=0.81)=-0.32;呈現非線性之關係。 2. 在腦波之變化比較結果發現ASW(-0.32)到ASW(0.45)之範圍間,隨著ASW增加腦波在A(P2-N2) 之振幅差將減少;而左腦N2之潛時會隨著ASW增加而縮短。

並列摘要


Morimoto (1989) proposed in a spatial impression study that listening envelopment (LEV) and apparent source width (ASW) were two essential components that determine the spatial sense of a concert hall. While the acoustic impression of ASW was usually composed of direct sound and first reflection (Morimoto, 1989), the LEV was formed by response element. The auditory path through which an acoustic signal from the stage was transmitted to the listener’s brain proposed by Ando (1985) demonstrated in detail how the central nervous system processes the nerve impulse formed in the auditory nerve ending. The characteristic response in the process during which the nerve processes the acoustic signals can be observed and summarized using the cerebral cortex brainwaves. By modifying the magnitude of interaural cross-correlation function (IACC) of the space, the study investigated the changes in different indoor ASW responses and slow vertex response (SVR) caused by apparent acoustic stimulation and compared the difference among these changes. The study also tried to construct a study method with an objective physiological acoustic design. According to the study result: 1. By modifying the IACC in the psychological experiment, quantitative psychological measurements of ASW were as follows: ASW(IACC=0.56) = 0.45 > ASW(IACC=0.68) = 0.03 > ASW(IACC=0.35) = -0.16 > ASW(IACC=0.81) = -0.32, demonstrating a non-linear relationship. 2. The comparison result between changes in brainwaves suggested that within the range from ASW(-0.32) to ASW(0.45), the difference in brainwave amplitude at A (P2-N2) decreased with the increased ASW; while the duration of N2 latency of the left hemisphere shortened with the increased ASW.

參考文獻


5.陳炯堯、張淳華,2000,”雙耳互函數與聲源方向感度之探討-以兩反射音模擬聲場為例”,朝陽設計學報,1, p101-114。
13.簡佑宏,2006,”運用腦波測量儀器測聽情緒反應”,中原學報,第三十三卷第一期。
9.陳炯堯、陳永祥,2010,「空間語音清晰度與大腦皮質上連續腦波之關聯性」,碩士論文,朝陽科技大學建築及都市設計研究所,台中。
8.陳炯堯、游財榮,2009,「中西傳統樂器獨奏時之主觀聲源寬廣度比較研究」,碩士論文,朝陽科技大學建築及都市設計研究所,台中。
10.陳炯堯、林威宇,2011,「單音節語音聽取明瞭度與室內雙耳互函數之關聯性研究」,碩士論文,朝陽科技大學建築及都市設計研究所,台中。

延伸閱讀