透過您的圖書館登入
IP:18.222.240.21
  • 學位論文

以生物薄膜反應槽處理光電面板產業廢水之案例探討

Case Study on ter Wastewater Treatment or TFT-LCD Industrial Manufacturer Using Membrane Bioreactor

指導教授 : 王文裕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究針對某面板科技廠TFT-LCD所產生之廢水,依其相關特性,分析廢水處理效率,前端處理設備裝設上流式厭氧汙泥床系統(Upflow Anaerobic Sludge Bed,UASB),再經中段之傳統活性污泥,尾端則為薄膜生物反應槽(Membrane Bio-Reactor,MBR),由初期試車、馴養,分析不同操作條件及參數變化。 系統操作條件為每日水量(Cubic Meter per Day,CMD)、pH值、化學需氧量(Chemical Oxygen Demand,COD)、氧化還原值(Oxidation-Reduction Potential,ORP),系統參數為總有機碳(Total Organic Carbon ,TOC)、混合液懸浮固體物 (Mixed Liquid Suspended Solid,MLSS)、薄膜生物反應槽(Membrane Bio-Reactor,MBR)出水壓力(kg/cm2),探討各操作參數影響放流水TOC、MLSS及MBR膜出水壓力等系統參數。以達到放流水標準為主要目標,在過程中評估最經濟且有效的操作條件,並利用這些操作條件來進行現場參數調整。 研究期間監測結果得知,厭氧UASB系統之實廠進流水70 CMD;厭氧槽pH為6.7;厭氧-ORP為-319(mv);厭氧-MLSS為14513 (mg/L), TOC為29 %。 好氧系統為440 CMD;傳統生物槽pH為7.0;傳統生物槽-MLSS為4509 (mg/L);MBR-MLSS為8541 (mg/L);MBR出水pH為6.5,好氧系統COD去除率為91 %。 MBR-A系統運作結果平均值如下,出水累計流量為155.4 (CMD);出水壓力為1.0 (kg/cm2)。MBR-B系統運作結果平均值如下,出水累計流量為161.5 (CMD) ; 出水壓力為1.1 (kg/cm2) 。MBR-C系統運作結果平均值如下,出水累計流量為161.5 (CMD) ; 出水壓力為1.1 (kg/cm2) 。 本研究監測結果顯示,系統進流水由厭氧系統到好氧系統過程中,出流水質皆相當穩定。本實廠生物薄膜反應系統對於面板實廠廢水水質之改善,具有極佳之處理功效。

並列摘要


This study analyzed the wastewater treatment efficiency of the wastewater generated from the manufacturing of TFT-LCD at a panel technology factory, based on the relevant wastewater characteristics. The wastewater first went through the Up-flow Anaerobic Sludge Bed (UASB) installed at the front-end treatment equipment. It then went through the traditional activated sludge in the middle section and the Membrane Bio-Reactor (MBR) provided at the tail end. Based on the trial run, raising and training, different operating conditions and parameter variance were analyzed. The system operating conditions included the Cubic Meter per Day (CMD), pH value, Chemical Oxygen Demand (COD) and Oxidation-Reduction Potential (ORP). The system parameters included the Total Organic Carbon (TOC), Mixed Liquid Suspended Solid (MLSS), Membrane Bio-Reactor (MBR) and effluent pressure (kg/cm2). The effect of the various operating parameters on the system parameters, such as the effluent TOC, MLSS and MBR-membrane effluent pressure, were explored. The main purpose was to achieve the effluent standards. The most economical and effective operating conditions were assessed and utilized to adjust the on-site parameters during the process. According to the results monitored during the study, the influent of UASB system in the factory is 70 CMD; the anaerobic tank pH value is 6.7; the anaerobic-ORP is -319 (mv); the anaerobic-MLSS is 14513 (mg/L); and the TOC is 29%; that of the aerobic system is 440 CMD; the traditional biological tank pH value is 7.0; the traditional biological tank-MLSS is 4509 (mg/L); the MBR-MLSS is 8541 (mg/L); the MBR effluent pH value is 6.5; and the aerobic system COD removal rate is 91%. The average values of the results of MBR-A system operation are as follows: the cumulative effluent flow is 155.4 (CMD); and the effluent pressure is 1.0 (kg/cm2). The average values of the results of MBR-B system operation are as follows: the cumulative effluent flow is 161.5 (CMD); and the effluent pressure is 1.1 (kg/cm2). The average values of the results of MBR-C operation are as follows: the cumulative effluent flow is 161.5 (CMD); and the effluent pressure is 1.1 (kg/cm2). According to the results monitored during the study, the effluent water quality is stable throughout the process of the system influent transferred from the anaerobic system to the aerobic system. The biomembrane reaction system in the factory has excellent treatment efficiency in improving the wastewater quality of the plant effluent.

參考文獻


2. 經濟部技術處,2014顯示器產業年鑑(2014)
3. 吳文定, 蔡春進, 2007. 某彩色濾光片廠的潔淨室內揮發性有機氣體濃度分佈研究. 工業安全衛生月刊(2007.10)
4. 龍柏華, 2003. “濕蝕刻製程介紹暨機台原理簡介.” 光連:光電產業與技術情報月刊(48 期)
14. Thompson D., Mourato D., Penny, J. (1998). Demonstration of the ZenoGem Process for Municipal Wastewater Treatment. WEF Annual Conference, Chicago.
1. Berthold G. and K. Krauth. (1999). Replacement of Secondary Clarification by Membrane Separation-Results with Tubular , Plate and Hollow Fibre Modules” , Wat. Sci. Tech. 40(4-5), pp. 311-320.

延伸閱讀