透過您的圖書館登入
IP:13.58.244.216
  • 學位論文

固定污染源細懸浮微粒排放特徵與化學成份分析研究

Chemical Composition and Emission Characteristics of Fine Particulate Emitted from Stationary Sources

指導教授 : 楊錫賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究針對台灣地區之固定源細懸浮微粒進行採樣,參照USEPA之Method 201A與Method 202 採樣方法,建立完整煙道PM2.5採樣分析技術,解析重大固定污染源過濾性與凝結性PM2.5排放特性,並建立台灣地區固定源PM2.5排放係數與指紋圖譜。採樣對象分別為鍋爐蒸汽產生程序、廢棄物處理、鋼鐵冶煉與金屬加工製造程序、紡織業、磚窯業、玻璃纖維製造與瀝青製造業,共計32點次;各採樣點煙道排氣溫度介於20.3 ~ 239℃,依據USEPA Method 202方法,當煙道中排氣溫度大於30℃時需進行CPM之測定。本研究PM2.5微粒係利用採樣管前端加裝PM2.5旋風分徑器來收集煙道中之PM2.5微粒,參照USEPA Method 201A方法除了將已完成採樣PM2.5濾紙收集外,另外應將旋風分徑器上殘留之小於或等於2.5 μm之微粒利用丙酮沖洗回收,當微粒進入到PM2.5旋風分徑器中絕大部分約有95%之PM2.5微粒會被濾紙所收集,剩下約5%左右之PM2.5微粒會殘留於旋風分徑器上。本研究除收集煙道中之可過濾性PM2.5微粒外,另於Method 201A後端連接Method 202收集CPM,此方法係利用冷凝器將煙道中排放之氣體經冷凝的方式後收集煙道中之CPM。本研究結果顯示檢測之32點次過濾性PM2.5濃度介於0.07 ~ 34.2 mg/Nm3,不同行業別因為製程與污染防制設備不同,排放濃度有相當大的差異;凝結性PM2.5濃度介於0.02 ~ 403 mg/Nm3,差異亦相當大。凝結性PM2.5所佔平均比例為60%,顯示進行固定源PM2.5檢測若未測定可凝結性PM2.5會低估PM2.5之排放。各採樣點之無機CPM濃度約占70% ~ 95%,其餘為有機CPM約占2.6~27.9%,另有少部分為前端衝擊瓶未完全收集,最後由後端之鐵氟龍濾紙所收集到之CPM約占0.03% ~ 3.6%。 本研究各採樣點化學組成方面,碳成分所佔比例平均為38.3%,各採樣點OC皆高於EC;陰陽離子平均比例為25.8%;金屬元素平均為18%。各類別製程PM2.5、碳成份、陰陽離子與金屬元素之平均排放係數,電力業分別為2.39、1.05、0.48與0.55 g/MWh;蒸氣鍋爐分別為109、46.9、39.5與5.92 g/ton;磚窯業分別為7.81、2.82、1.22與1.17 g/ton;廢棄物處理分別為0.35、0.17、0.08與0.05 g/ton;事業廢棄物焚化爐分別為7.93、3.29、2.75與0.62 g/ton;鋼鐵業分別為1.13、0.3、0.21與0.62 g/ton;金屬加工業分別為33.3、14.4、10.4與4.26 g/ton;紡織業分別為41.7、26.9、6.63與1.59 g/ton;瀝青業分別為1.67、0.77、0.41與0.16 g/ton;玻璃製造業分別為1.76、0.76、0.67與0.07 g/ton。

並列摘要


In this study, fine particulate emitted from stationary sources were collected by USEPA Method 201A and Method 202. Complete stack PM2.5 (including filterable and condensable) sampling and analysis techniques have been established and were applied to characterize PM2.5 emissions from major stationary sources in Taiwan. In addition, PM2.5 emission factors (EF) and source profiles from the stationary sources are established. Thirty-two samples from various plants including boiler steam generator, waste incinerator, steel and metal processing and manufacturing procedures, textiles, brick manufacturing, glass fiber and asphalt manufacturing were collected. The stack exhaust temperature are between 20.3 ~ 239℃ for the plants. It is necessary to measure CPM when the stack exhaust temperature is higher than 30℃ according to USEPA Method 202. According to USEPA Method 201A, residues of the cyclone should berecovered by acetone washing. The results show that about 95% of the PM2.5 particulates are collected on the filter and the other 5% PM2.5 particulate are in the cyclone. Filterable PM2.5 concentrations are 0.07 ~ 34.2 mg/Nm3 for the 32 samples. High variations of PM2.5 concentrations are due to different processes and different air pollutant control devices for the industries. Concentrations of condensable PM2.5 are 0.02 ~ 403 mg/Nm3. Condensable accounts 60% of total PM2.5 in average. The results show that PM2.5 emissions would be underestimated of condensable PM2.5 is not included for the measurement of PM2.5. PM2.5 cyclone is installed in front of the sampling to separate particulate larger than 2.5 μm. For the compositions of condensable PM2.5, 70%~95% is in the inorganic portion (washed by water). Less than 30% is in the organic portion (washed by acetone and hexane). Very little portion (0.03 to 3.6%) is collected by the backup Teflon filter. Chemical compositions of PM2.5 samples were measured. OC accounts for 38.3% of PM2.5 averagely, which is higher than EC. The ions account for 25.8% and metals account for 18% of PM2.5 in average. The emission factor are carbon, ions and metal elements are as follows: Power plants: 2.39, 1.05,0.48 and 0.55 g/MWh; Steam boiler: 109, 46.9, 39.5 and 5.92 g/ton. Brick manufacturing: 7.81, 2.82, 1.22 and 1.17 g/ton; Waste incinerator: 0.35, 0.17, 0.08 and 0.05 g/ton; Industrial waste incinerator: 7.93, 3.29, 2.75 and 0.62 g/ton; Steel plant: 1.13, 0.3, 0.21 and 0.62 g/ton; Metal processing: 33.3, 14.4, 10.4 and 4.26 g/ton; Textiles: 41.7, 26.9, 6.63 and 1.59 g/ton. Asphalt: 1.67, 0.77, 0.41 and 0.16 g/ton; Glass manufacturing: 1.76, 0.76, 0.67 and 0.07 g/ton.

參考文獻


Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A., “Source apportionment of fine and coarse particulate matter in a suburban area at the western European coast.” Atmospheric Environment, Vol. 39, pp. 3127-3138 (2005).
Bhanarkar, A.D. Gavane, A.G. Tajne, D.S. Tamhane, S.M. Nema, P., “Composition and size distribution of particules emissions from a coal-fired power plant in India.” Fuel, Vol. 87, pp. 2095-2101 (2008).
Brook, J. R., Dann, T. F., Rurnett, R. T., “The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Lacations.” Journal of the Air and Waste Management Association, Vol. 47, pp. 2-19 (1997).
Cao, J.J., Lee, S.C., Ho, K.F., Zhang, X.Y., Zou, S.C., Fung, K., Chow, J.C., Watson, J.G., “Characteristics carbonaceous aerosol in pearl river delta region, China during 2001 winter period.” Atmospheric Environment, Vol. 37, pp. 1451-1460 (2003).
Chan, Y. C., Simpson, R.W., Mctainsh, G. H., Vowles, P. D., Cohen, D. D., Bailey, G. M., “Source Apportionment of Visibility Degradation Problems in Brisbane (Australia) Using the Multiple Linear Regression Techniques.” Atmospheric Environment, Vol. 33, pp. 3237-3250 (1999).

延伸閱讀