透過您的圖書館登入
IP:3.138.122.4

淡江大學機械與機電工程學系碩士班學位論文

淡江大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

本論文發展視覺輔助移動工件偵測與追蹤系統,應用在DELTA機器人於工作平檯上的工件夾持任務。本論文發展了三個系統包含DELTA機器人、視覺輔助量測、與移動工件狀態估測等。在機器人系統架構部分,設計機器人機構、調整與設定馬達驅動器、與規劃機器人控制器等;在視覺輔助量測系統部分,進行影像處理、攝影機校準、視覺量測模型建立、與立體工件方位量測等;在移動工件狀態估測方面,規劃平面投影轉換與卡爾曼過濾器兩種工件狀態估測器。發展完成的三個系統,整合成視覺輔助Delta機器人偵測、追蹤與夾持系統。本論文使用單部攝影機裝設在工具軸的方式擷取影像,特點包括節省設備成本與裝設空間、可同時近距離做工件檢測與分析、可避免視覺感測被遮蔽、方便工具軸任務進行中重新調整定位姿態等。另外,視覺輔助工件量測與工具軸運動路徑規劃,則是轉換到卡氏世界座標運算,以利於分析狀態估測與夾取定位的精確度。本論文也測詴多項實驗,以驗證所發展的系統之效能。

  • 學位論文

本論文針對仿生蜂鳥機構進行運動分析以及討論四連桿機構之搖撼力與搖撼力矩。蜂鳥機構由史蒂芬森第三型六連桿機構、及兩翼機構所組成,其中史蒂芬森第三型六連桿機構包含伊式四連桿直線機構。本論文首先從事六連桿機構及兩翼機構之位置分析,求出兩翼之相位差,然後進行六連桿機構及兩翼機構之速度、以及加速度分析,求出速度及加速度相位差。本論文並討論四連桿機構之靜態平衡以及動態平衡。利用四連桿機構運轉之中,對地面反作用力合力等於慣性力的合力求出搖撼力之通式。接著利用外力造成之合力矩等於慣性力所造成之合力矩,求得搖撼力矩之通式。由這些通式發現傳動角若接近0度或180度,搖撼力以及搖撼力矩數值會趨近無限大。

  • 學位論文

本研究採用無氧銅作為熱管殼體,外徑8 mm,長300 mm,厚度0.3 mm,分別採用燒結式及溝槽式兩種不同之毛細結構,營造一毛細力將冷卻液體輸送回熱源端吸收熱量,考量殼體與毛細結構的附著力與相容性,採厚度為1.8 mm,孔隙率50 %的銅粉燒結,和厚度為0.25mm,齒數為68齒之溝槽,本實驗使用之工作流體為陶氏高温導熱油(Dowtherm–A)。實驗輸入功率依序為20W、40W、60W、80W、100W,對不同充填量的熱管,在水平與垂直兩種角度下,操作溫度介於200 ~500°C時,進行熱性能的評估與分析。 實驗結果指出,在水平狀態下,燒結式充填Dowtherm A 4克(80%)之中溫熱管,傳遞熱量較大,蒸發端與冷凝端溫差較其他充填量小,且在輸入功率為60W後,熱阻低於銅棒,最佳熱阻為1.065°C/W,溝槽式充填量4克(412%)在輸入功率為80W後,熱阻較銅棒低,最佳熱阻為2.113°C/W,可見在水平狀態下燒結式熱性能較溝槽式優越。此外,在垂直狀態下,充填Dowtherm A 4克之燒結式熱管,最佳熱阻為0.563°C/W,傳輸速度約為銅棒的5倍,而溝槽式充填Dowtherm A 4克之熱管,最佳熱阻為0.639°C/W,傳輸速度約為銅棒的4.2倍,結果顯示熱管擺放角度對於Dowtherm-A在不同毛細結構之熱管皆有明顯之影響力。

  • 學位論文

本研究使用玻璃製震盪式熱管,內、外徑分別為3 mm及6 mm,工作流體為去離子水及90 ppm之四氧化三鐵磁性奈米流體,填充率固定50 %,冷凝端操作溫度為25°C,輸入加熱功率20、60、100、140及180 W,分別在無磁場、不同磁通密度大小(1415、935及625高斯)及不同磁場施加狀態下進行實驗,利用數位攝影機拍攝記錄,觀察管路中工作流體的作動情形以及磁性奈米流體搭配磁場下對震盪式熱管之影響,並分析其熱阻。 結果顯示,加入磁性奈米流體能夠提升震盪式熱管之性能,並且在磁場作用後,震盪式熱管之熱阻會隨著磁場強度的增強而降低;在各種實驗參數下,熱阻會隨著加熱功率增加而下降,並且在瓦數從20加至60 W時,磁場之影響最為顯著,但在較高功率時,各熱阻值均趨於一致,因此在較高功率下磁性奈米流體及磁場對於震盪式熱管之影響並不明顯。另外在磁場作用下,磁性奈米顆粒會因磁場之吸力而吸附於管壁上,在特定瓦數將磁場移除後,吸附之顆粒不會因為加熱功率及震盪頻率的增加而脫落,磁性奈米顆粒一旦受磁場作用後,將能夠穩固的吸附於管壁,並且維持震盪式熱管之熱性能。

  • 學位論文

本論文使用物件模型結合行人偵測器,發展機器人即時偵測與追蹤移動物體系統。三個主要研究議題包括結合移動特徵偵測與行人偵測器、改良機率物件模型、與物件模型訓練調整機制等。首先,將移動特徵偵測結合行人偵測器,以限定移動物件特徵的分佈範圍。不同群的移動特徵,將被訓練成不同的移動物件;其次,修改機率物件模型的描述,確保移動物體追蹤的強健性。使用單張影像的特徵取代多張影像的特徵訓練物件模型,以提高運算效率與進行線上建模。最後,利用移動物件辨識與追蹤的回授,調適物件模型訓練的條件。調適機制分別依據定值、專家表與模糊規則等方法設計。 發展的移動物件追蹤系統進一步與視覺式同時定位與建圖系統整合,成為同時定位、建圖與移動物體追蹤系統。使用擴張型卡爾曼過濾器估測系統狀態,以及使用加速強健特徵建立視覺式環境地圖。本研究也規劃多個實驗測試範例,驗證所發展的系統之效能。

  • 學位論文

根據先前文獻可知,微盤的形狀對於光子奈米噴流的產生有相當大的影響,因此本論文研究兩種介電材料(二氧化矽與聚二甲基矽氧烷)的非圓形微盤在三種(紅、綠、藍)雷射光源照射下產生的光子奈米噴流現象。本論文將不同直徑的圓盤截斷成相同寬度的非圓形微盤來進行理論計算與實驗量測。在理論計算方面,本論文使用時域有限差分法來模擬各種寬度非圓形微盤的光子奈米噴流光場分佈與光強度變化。在非圓形微盤製程方面,本論文使用半導體製程和翻模技術,做出兩種介電材料的非圓形微盤。在實驗量測方面,本論文使用高靈敏度光學顯微系統,來觀察非圓形微盤光子奈米噴流的實際影像,並撰寫電腦程式來計算光子奈米噴流的各種參數,其中包含噴流焦距、半高全寬、衰減長度。經由數值計算和實驗結果相互驗證,本論文發現改變非圓形微盤的寬度就能夠控制光子奈米噴流的聚焦效果、增加焦距、提高衰減長度或增加聚焦強度,這些特性有助於發展下世代的奈米級光學顯微物鏡。

  • 學位論文

本論文研究結合數位結構光投影、多步相位移、相位展開與參考平面扣除法等技術來量測滾珠螺桿之三維曲面,其中結構光為黑白餘弦條紋,相位移技術採用三、四、五及七步相位移法,相位展開技術採用路徑獨立型相位展開技術,並改良參考平面扣除法,成功減少參考平面扣除時產生的相位誤差。在實驗系統方面,本論文使用DLP投影機作為結構光光源,CCD攝影機為接收裝置,並透過電控轉盤來控制攝影機的角度,精確的進行不同角度之量測,以觀察在不同量測角度和多步相位移干涉下對螺桿三維曲面量測的影響。實驗結果證明,七步相位移干涉的量測結果最佳,其相位誤差最小,而量測角度以20°為最佳,當量測角度越大時,則相位損失越嚴重。本論文建立出一套完整的多步相位移干涉量測系統,系統架構簡單,操作容易,量測精度可達0.05 mm,未來可應用於生產線上之即時三維曲面量測。

  • 學位論文

本研究利用共析出法及溶劑熱法成功製備摻雜鈣、鋰及銅之氧化銦錫粉末,摻雜濃度分別為4at%、6at%及8at%,並探討摻雜元素及含量對粉體之光學及電學性質影響。由XRD繞射分析知摻雜元素不會改變氧化銦錫晶體結構。由全光譜儀分析知,摻雜鈣離子會降低其能隙,呈現出紅移的趨勢;而摻雜鋰離子則會增加能隙,呈現出藍移的趨勢。由霍爾電壓分析知,載子濃度隨摻雜量提升而上升,遷移率則是相反。

  • 學位論文

本研究利用共析出法及溶劑熱法成功致被摻雜鈦與鋅離子之氧化銦錫粉末,摻雜濃度分別為4at%、6at%及8at%,並探討摻雜對粉體光學及電學性質影響。由XRD繞射分析知摻雜元素不會改變氧化銦錫晶體結構。經由溶劑熱處理後,粉體氧空缺增加形成淡藍或深藍色。由全光譜儀分析知,摻雜鈦及鋅離子會增加其能隙,呈現出藍移的趨勢。由霍爾電壓分析知,載子濃度隨摻雜量提升而上升,遷移率則是相反;摻雜鈦及鋅離子對導電率沒有明顯影響。

  • 學位論文

隨著科技的蓬勃發展,光電產品不斷的推陳出新,從感光底片到數位相機時代,人們對於影像品質的追求越來越高,尤其朝向微小化尺寸的發展。小尺寸的光學透鏡用途廣泛,在醫療上能作為膠囊式內視鏡減少病患對於侵入性治療的不適感;在軍事上能進行不易使敵人察覺的超小型偵查機使用;而在生活上能發展出高畫質的視訊鏡頭或手機鏡頭。因此在光學元件的發展上,對於微小尺寸且複雜結構之光學透鏡有很大的前景。相較於塑膠透鏡,玻璃透鏡有更優越的化學性質,例如耐侵蝕、不易受潮、黃化等優點;在物理性質上,玻璃比塑膠更加耐刮、抗磨損、光學透性佳。所以高品質的微小透鏡是個很有前景的發展方向。 本研究致力於開發一套完整之次毫米玻璃微透鏡之研製成果。在本研究中進行了光固化樹脂鑽石砂輪之開發,以不同粒徑(2~4μm與30~40μm)的小尺寸砂輪(φ0.5mm)進行粗加工與精加工,應用於次毫米微玻璃透鏡之碳化鎢模具加工上,並成功生產出形狀精度達到0.12μm且表面粗糙度(Ra) 可達到2nm之模具。由於小尺寸砂輪(φ0.5mm)在模具加工上會因為砂輪的磨耗使得加工精度不佳,因此要透過多次的補償與加工方能達到對形狀精度的品質要求。將加工完成之碳化鎢模具對微小玻璃球(φ0.5mm)進行模造熱壓,其成果相當貼近模擬結果,探究其原因是由於玻璃球僅0.5mm,因此腔室內上下均熱板溫度能迅速且平均的傳遞至玻璃球上,使得模造溫度達理想狀態。成形透鏡之形狀精度能達到0.4μm以下且表面粗糙度達到10nm(Ra)以下。從各項研究結果證實,本研究所進行的樹脂砂輪開發與碳化鎢模具之製造能成功研製出次毫米玻璃微透鏡。