透過您的圖書館登入
IP:18.118.12.101

清華大學化學系所學位論文

國立清華大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

摘 要 本論文主要是利用釕金屬錯合物{TpRuPPh3(CH3CN)2SbF6}和鉑金屬錯合物(PtCl2)催化曲型多苯環分子的合成,論文中合成三種對襯的曲型多苯環分子,分子設計上是以[5]helicene為主體,並且設計多個巨大的R group,增加其溶解度及實用性,設計分子C、S02、S01如下: 文中詳盡介紹合成方法,並且深入探討其物理性質,包括常溫及低溫下的分子構型,最後利用這些合成出的產物,做一系列有機材料的基本量測。

  • 學位論文

本論文主要分為兩個章節,主要是利用金催化1,5-烯炔類化合物進行氧化環化反應與丙二烯類化合物進行異構化反應。   在第一個章節中,我們嘗試利用金與銀催化劑搭配氧化劑8-methylquinoline N-oxide的使用,可以成功的使得1,5-烯炔類進行氧化環化反應,成功的建構出一系列茚酮類的衍生物。 而在第二個章節中,我們則是利用金催化劑與亞硝基苯來催化丙二烯類化合物的異構化反應,可以在反應條件溫和的情況下建構一系列1,3-二烯類的衍生物。並可在一鍋化的條件下與另外的烯鍵作狄爾斯-艾爾德反應,成功的建構出更複雜的環化骨架產物。

  • 學位論文

半導體奈米粒子時常是在有機相中及高溫下反應。如果能將奈米粒子的合成在水相中進行,則可以減少能量的消耗及能達到綠色化學的效果。根據文獻得知,若想要在水相中合成硫化鉛奈米晶體,則至少需要加熱12小時到24小時,而我們的實驗目的則是要能有效縮短反應時間且達到一系列的形狀變化。 在本次實驗中,我們在水相的環境中利用植晶方法,經由二次成核的方式長成硫化鉛奈米粒晶體,整個反應時間約2個半小時,合成的奈米粒子其大小範圍則介於30至60奈米之間。除此之外,可藉由硫代乙烯胺濃度從0.05 M至0.025 M的調整,使硫化鉛奈米晶體的形狀從立方體可以逐漸轉變成八面體。至於立方體及八面體的奈米粒子分別是由{100}和{111}晶面所組成的,而立方八面體是{100}和{111}晶面所組成的,經由粉末X-ray繞射的鑑定得知合成出的奈米晶體為硫化鉛,且其不同的形狀可得到具有擇優取向的訊號。此外藉由TEM選區電子繞射鑑定也可以做材料鑑定和得知奈米晶體的晶面。 除此之外,從SEM上還發現到截角立方體及八面體個別具有不同的單層與多層的排列情形,並藉由粉末X-ray繞射鑑定不同排列情形造成的擇優取向繞射圖。

  • 學位論文

突觸結合蛋白 I (Synaptotagmin I, Syt I)是神經細胞突觸囊泡上的一種膜蛋白,而C2A與C2B則是其具有重要功能的胞質片段。近年的研究顯示,C2A會與鈣離子作用,而C2B則會與多磷酸肌醇作用。在鈣離子引發的神經傳導物質釋放的過程中,C2A與鈣離子的結合會活化神經傳導物質從神經突觸前膜釋放,但當C2B與多磷酸肌醇結合則會抑制此過程。利用親和性層析方法先將C2AB片段與老鼠大腦萃取物混合後,再以含有六磷酸肌醇之沖湜液沖湜,發現另一複合蛋白的次體、μ2, the subunit of clathrin assembly protein, AP-2。此結果顯示,當六磷酸肌醇與C2B結合時,會改變Syt I–AP-2間的作用力,進而抑制神經傳導物質的釋放。我們利用多維核磁共振的技術來研究C2B與六磷酸肌醇的複合物結構。我們的研究結果顯示,當六磷酸肌醇與C2B結合後,會引發C2B蛋白之結構改變,進而使C2B喪失了與AP-2的結合力。此研究結果在藥物學的治療上針對神經失調疾病將有助於開發出更好的新藥。

  • 學位論文

This dissertation presents experimental and theoretical studies of mechanisms of matrix-assisted laser desorption/ionization (MALDI), encompassing the primary reaction, secondary reaction, and desorption process. In the first part, the chemical reactions that affect the primary ionization of matrix in MALDI are addressed. It focuses on relaxations of photon energy on a timescale comparable with that of ionization. These relaxations consume the available energy and change the ionization conditions. They include fluorescence and fragmentation, as well as internal conversion followed by vibration relaxation, which build up the thermal energy in the ground state. With high absorption cross-section and long excited state lifetime, photoionization is important to the production of ions of the matrix; otherwise the photon energy is predicted to be converted to the thermal energy in the ground-state, promoting thermal-induced reaction that includes thermal ionization and fragmentation. The chemical properties of matrices and the excitation conditions alter the branching ratio of the aforementioned reactions. The chemical reactions of four commonly used matrices were discussed with reference to the obtained solid-phase absorption spectra of mixed matrix crystal, fluorescence properties, infrared emission, and abundance of fragments that were detected by a mass spectrometer. Evidence of change in the primary reactions at three laser wavelengths (266, 337, and 355 nm) was systematically analyzed. This concept may explain the diversity of experimental results observed in the MALDI experiments, providing insight into the ensemble of chemical reactions that influence ion production. In the second part, we focus on the study of 2,4,6-trihydroxyacetophenone (THAP), in which most of the absorbed energy in this matrix contributes to the non-radiation decay channel and is converted into thermal energy. Evaluation of the thermal contribution to MALDI was studied on THAP-based MALDI. This work demonstrates quantitatively the desorption of ions and neutral molecules in MALDI. Theoretical modeling incorporates transition state theory to predict the desorption of both ions and neutral molecules, assuming that chemical and thermodynamic equilibrium are established in the solid state prior to desorption. The utilized model differs from conventional models that assume chemical equilibrium is established in the gas phase. A quantitative thermodynamic interpretation in the solid state was proposed to predict the desorption of neutral matrix molecules, matrix ions, and analyte ions (angiotensin I) which are embedded in matrix molecules. The variation in ion yield with effective temperature under various conditions of laser fluence and initial temperature is predicted by the thermal model. The analysis also reveals the essential role of ion concentration in the modeling for the best fitting. The divergence of the ion beam with varying laser fluence was examined using an imaging detection method and the signal saturation that was normally observed at high fluence was appropriately reduced by ion focusing. Simplified but deceptive theoretical interpretations were obtained when the analysis was carried out without adequate calibration of the instrument bias. Finally, the mass spectrum of the mixture of THAP and C60 that were irradiated by 450 nm photons that were absorbed by C60 but not by THAP provides further experimental evidence to acknowledge the thermal contribution to proton disproportionation reaction between matrix molecules.