透過您的圖書館登入
IP:3.20.235.88

臺灣師範大學化學系學位論文

國立臺灣師範大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

本實驗利用雙色共振雙光子游離光譜術以及質量解析臨界游離光譜術來探討2-氟化萘在第一電子激發態和離子基態的分子特性,所得到的資訊包括從基態到第一電子激發態躍遷能量、游離能以及在第一電子激發態和離子態的振動光譜。這些振動光譜數據就如分子指紋一樣,可用來當作鑑定個別分子的依據。光譜分析的結果顯示出第一電子躍遷能為31803 ± 2 cm-1和絕熱游離能為66771 ± 5 cm-1。在光譜上所看到大部分的振動模式都和芳香環上的平面運動有關。比較本實驗所得到的2-氟化萘和文獻上萘的光譜數據可以幫助我們了解氟的取代基效應在萘上對電子躍遷和游離過程及分子振動的影響。另外我們也利用初始計算法及密度泛函數理論計算,來幫助進行分子光譜標定工作。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本篇主旨在利用不同方法合成出13nm、7nm及4nm之PdxFe1-x奈米粒子,做為燃料電池陰極觸媒,成本較傳統市售的白金觸媒來的低,並調控Pd及Fe的組成比例,由XRD、TEM、EDS與XAS中的XANES及EXAFS來鑑定奈米粒子之結構及表面組成,並進行電化學分析,利用旋轉電極測量其對氧氣還原反應的催化活性,探討PdxFe1-x的電催化特性與其結構間的關係,發現4nm之PdxFe1-x奈米粒子擁有較佳的催化效果,根據結果顯示,隨著奈米粒子之粒徑趨於變大,則氧氣還原反應的onset potential將向負偏移,而Fe及Pd的表面組成比越趨近於一比一,則mass activity越大,表是吾人利用水相合成出ultra small且表面組成比為一比一的PdxFe1-x/C奈米粒子在燃料電池陰極氧氣還原反應擁有良好的催化特性。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本文針對奈米磁性粒子之表面修飾之特性做進一步的探討,成功合成具生物應用性之FeCo@SiO2及FeCo–poly(NIPAAm-co-AAm)奈米磁性複合材料。首先藉由逆微乳化技術將鐵鈷粒子包覆於二氧化矽,並在表面修飾上胺基,使磁性複合材料能和特定生物分子鍵結。而含有特定生物分子的磁性複合材料可應用於免疫磁性分離,用來檢測常見的疾病。實驗設計上,我們將磁性複合材料表面修飾上Human IgG,並依序加入一級抗體Anti-Human IgG及二級抗體-FITC,再利用螢光強度得知其濃度。我們以FeCo@SiO2奈米磁性複合材料建立一個免疫檢測平台並將自由態的磁性複合材料與一般固定態的檢測法比較,期待此平台能夠在醫療的診斷上增加便利性、快速性及準確性。 並以化學方法將FeCo奈米粒子與溫感型水膠形成奈米磁性複合微粒,在溫度變化下於DLS (dynamic laser scattering)觀察到複合微粒反覆以收縮與膨潤應答,表示此複合微粒仍保有水膠之性質。因此我們認為此複合微粒在磁熱治療及藥物釋放上具有潛力。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

聚3, 4-二氧乙基噻吩(PEDOT)擁有相對於其他導電高分子較大之可逆氧化還原電位,可擴大超級電容之電位範圍,提升能量與功率密度,並與其他陽極材料組合非對稱式超級電容器,改善對稱式導電高分子電容器之電位範圍侷限。 本研究主要以電化學聚合法,首次成功合成直接成長於碳布基材之PEDOT奈米線。實驗條件為先以循環伏安法,掃描速率為10 mV/s掃描5圈,再加予1 mA之定電流成長5分鐘,可得直徑約60 nm之PEDOT奈米線。相對於PEDOT薄膜,PEDOT奈米線具有較高表面積並縮短離子擴散距離,以1 M硫酸為電解質,比電容量可達321.1 Fg-1。 另使用直接成長於碳布之奈米碳管做為基材,以電化學循環伏安法(掃描速率為100 mV/s,掃描20圈),將PEDOT包覆於奈米碳管,形成直徑為167.2 nm之PEDOT-CNTs複合材料。利用碳管之高比表面積、導電性與低內電阻等特性,提升功率與功率密度。以1 M硫酸鈉為電解質,所得之能量密度可達138.3 Whkg-1;功率密度可達31.5 kWkg-1,在硫酸水溶液下可得比電容量為486.5 Fg-1。 最後將PEDOT與適合做為陽極材料之聚苯胺(PANI)、氧化錳(MnO2)組合成非對稱式電化學電容器,其電位範圍可分別擴大至1.4 V與2.0 V,改善電位範圍狹隘之缺點。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本實驗係以二硫化鐵奈米晶體 (FeS2 NCs) 作為近紅外光偵測器的主動層,並以氧化锌 (ZnO) 作為元件 blocking layer 之研究。二硫化鐵為非直接能隙半導體,擁有較窄的半導體能隙 (0.95 eV) ,且對光有很強的吸收,吸收範圍可以到近紅外光波段,之所以使用二硫化鐵奈米晶體的原因是因為材料合成容易、價錢低廉且是由對環境無害的元素組成。本實驗的二硫化鐵奈米晶體是利用溶液法合成,並可以進一步地藉由調控表面活性劑和溶劑比例來控制二硫化鐵奈米晶體的形狀以及在溶液中的分散性,接著藉由 XRD 和 TEM 可以分析其晶格和構型。而經由元件所量測的 J-V characteristics 及 temporal photocurrent response 得知,以二硫化鐵奈米晶體作為光偵測器之元件,確實在可見光及近紅外光波段 (波長 > 715 nm) 皆有光電流產生。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文利用磁性模組(Magnetic mode簡稱M-AFM)與導電模組(Conductive mode簡稱C-AFM)原子力顯微鏡技術,對儲鐵蛋白與其他蛋白質的影像與結構進行分析。實驗結果顯示,儲鐵蛋白的C-AFM影像與其結構極為吻合,顯示C-AFM具有蛋白質結構比對的應用潛力。我們測量儲鐵蛋白的M-AFM影像,發現雖然儲鐵蛋白的結構中存在鐵核,似乎不具有磁性。雖然如此,若對其施加偏壓,則可測得其影像,影像清晰度與偏壓大小成正比。根據數據模擬,該效應可能來自於偏壓可提升導電基材(ITO導電玻璃)或是蛋白質的磁矩(magnetic moment),與Agarwal所提出的理論頗為吻合。   本論文也利用偶氮化修飾法修飾類核黃素,如Thionine chloride,製備儲鐵蛋白修飾電極,並藉以探討電子在該蛋白質表面的穿隧行為。實驗結果顯示:儲鐵蛋白經Thionine chloride固定後,其與ITO間的吸附力相當於102個C-C單鍵的鍵能,而電子在其表面的傳遞速率約為自由電子的千分之一至百分之一。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

蛋白激酶 ( protein kinase ) 是生物體訊息傳導途徑的重要成員之一,藉由磷酸化特定蛋白質,調控細胞酵素及傳遞訊息。 本研究中,我們的目的是利用分子動力學模擬方法,幫助設計PKA的抑製劑。首先我們從蛋白質資料庫(PDB)中選擇4個具有IC50值的PKA配體複合物,當中有其它類似的配體分子,再利用MM/PBSA計算小分子和PKA之間的結合自由能。 四個結晶結構當中,除了2C1A模擬結果,與原有的IC50值相比不具正相關,其它三個結構與現有IC50值比,則得到良好的相關性。經過模擬計算,我們進行討論和分析,取代配體當中的那些官能基能提高整體的親合力。基於這些結果,我們進一步設計五個新配位分子。最後,得到了幾點改變官能基的建議:(1)添加甲基在鹵化苯基的環上,可以增加與疏水性空腔間的凡得瓦作用力。(2)添加羥基於小分子骨架,此羥基上的氧原子容易與ASN 168/ ASP 184產生強而穩定的氫鍵作用力。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

PKA為一種蛋白質激酶,有多種功能包括糖原調節、糖類與脂類的代謝;也與許多疾病諸如肺癌、結直腸癌等有關。在本研究中,我們利用分子嵌合計算來研究PKA的抑制劑。 首先,我們對20個蛋白質資料庫的PKA抑制劑複合物進行分子嵌合計算,研究其再現性。結果發現,計算評分值與實驗IC50值具有良好的相關性。第二,我們選擇5個PKA抑制劑複合物做交叉分子嵌合,研究當PKA來自不同的結晶構型時,如何再現小分子的構型。第三,使用相同5個PKA結晶構型進行虛擬篩選,計算10個具有抑制力小分子可從資料庫下載的1000個化合物中篩選出多少個。在這些模擬計算中,我們分析/討論當我們允許可動蛋白質活性中心附近的數個胺基酸支鏈時,其對結果的影響。我們發現,當設定可動4個胺基酸支鏈時,其結果較佳。最後,我們根據以上較佳的條件選擇及設定,高速虛擬篩選24535個化合物,並討論數個具有較佳親和力化合物與PKA之間的作用及其結合模型,這些計算結果將有助於實驗學家設計與搜尋PKA抑制劑。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

聚苯胺由於其本身獨特的電化學與光學特性,已廣泛地應用在化學、生物檢測器、超級電容器和燃料電池等領域。近年來,一維奈米結構的導電高分子,包括奈米線、奈米棒和奈米管等,具備低維高表面積與有機導體的優勢,更有著令人期待的發展。唯其在實際的應用上,尚須更進一步地探討與研究。本論文探討奈米導電高分子聚苯胺複合材料—製備、特性及其應用,主要內容包括有葡萄糖氧化酶酵素電極的製備,繼而應用於葡萄糖的偵測;另則探討聚苯胺奈米線/碳布與聚苯胺和奈米碳管複合材料電極的製備,以及其在超級電容器的應用。 第一部份為利用電化學合成方法,直接將聚苯胺奈米線成長在碳布表層,並同時植入葡萄糖氧化酶以製備成酵素電極,繼而應用於葡萄糖濃度的偵測。碳布被選擇作為電流的收集器,乃是考慮其具備高導電性、化學穩定性及其高孔洞三維結構可提供高表面積,可提供聚苯胺奈米線更多的成長空間;另由於直接成長的聚苯胺奈米線與碳布之間,有效降低介面瑕疵因素,因而可展現優異的偵測靈敏度。本研究所製備一維聚苯胺奈米線具備高表面積特性,有利於較高濃度葡萄糖氧化酶的植入,可將葡萄糖的偵測靈敏度提高至~2.5 mAmM-1cm-2程度,相關葡萄糖濃度的偵測範圍為0-8 mM,具備可應用於人體葡萄糖濃度的偵側能力。 至於超級電容器的應用,本論文主要探討聚苯胺奈米線/碳布與聚苯胺與奈米碳管,兩種奈米聚苯胺複合材料電極。本研究所製備出的聚苯胺奈米線/碳布電極,不僅具備高單位重量電容值之外,同時也具備相當高的單位面積電容值,顯示出極佳的電容效能。根據定電流充放電分析,其單位重量電容值高達1079Fg-1 ,相關比能量與比功率則分別為100.9Whkg-1和 12.1 Wkg-1,至於其單位面積電容值可高達1.8 Fcm-2程度。然而基於聚苯胺本身的電子傳導性較差(相較於金屬導體),因此在可逆氧化還原轉變的過程中,通常會由於聚苯胺本身的內電阻效應而導致部份電子的損失,降低了電容的穩定性,致使面臨無法長時間重複循環使用的缺點。對於奈米碳管材料而言,由於具備良好的導電性和機械性質,因而奈米碳管和聚苯胺複合材料,可大幅改善電極的導電性。因此,聚苯胺與奈米碳管混合式複合材料所製備電極,不但可提升其功率密度,而且也因具備優良的械性質,有效降低因重複循環使用所造成電極結構上的破壞程度。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

在光敏性染料電池的實驗中合成了兩系列釕錯合物,分別為含兩個 -NCS- 配位基與單一個 -NCS- 配位基以及 NCS 僅為吡啶取代基之錯合物。配位基上的推拉電子基團對氧化還原之影響可由 UV-vis 光譜與氧化還原電位測知。 此類錯合物在 I-/I3- + BMII 環境下 Ru(dcbpy)2(NCS)(im)+ 有最好的光電轉換效率,值最大為 5.93%。在 2Br-/Br2 + BMIBr 的環境下,新合成之錯合物 Ru(dcbpy)2(phenNCS)2+ 具有最好的光電轉換效率,值最高為 0.4%。 利用氧化端還原電位配合其光電轉換效率,發現錯合物之 HOMO 與電解質氧化電位兩者之間的能階差必須大於 0.32 V (v.s. SCE),才能提供足夠的 driving force 使電子從電解質傳遞到 HOMO,光電轉換效率才有辦法提高。 三個含羧基取代之吡啶之錯合物亦在此研究中合成,為Ru(dpa)2(mcbpy)2+、Ru(dpk)2(mcbpy)2+ 與 Ru(bpz)2(mcbpy)2+。在酸鹼性質的研究中,透過吸收度和冷光光譜強度對酸鹼值作圖可得基態和激發態解離平衡常數 pKa、pKa*’,再以錯合物質子化與去質子化之生命期校正,可得真正激發態平衡常數 pKa*。激發態與基態平衡常數的差值 pKa (pKa*- pKa),能顯示錯合物電子分布受到推拉電子基的影響。 這三個錯合物中,Ru(dpa)2(mcbpy)2+ 之 pKa 為 0.78,代表錯 合物激發態有較多電子轉移到含羧基聯吡啶上。而 Ru(dpk)2(mcbpy)2+ 之 pKa 為 -0.07,顯示錯合物激發態電子轉移到含羧基聯吡啶的效果 最差。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。