透過您的圖書館登入
IP:3.135.198.49

臺灣師範大學生命科學系學位論文

國立臺灣師範大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

@_@神經醯胺是一種由鞘胺醇鹼骨架和不同碳鏈長度的脂肪酸組成的神經脂質,在許多生理過程中扮演非常重要的角色,例如調控訊號傳遞路徑。在過去的研究中,我們發現在野生型小鼠離乳後給予神經醯胺能增進成年後的記憶行為,利用初級培養的神經細胞也發現神經醯胺可增加CaMKII的磷酸化,CaMKII是一個與學習與記憶相關的蛋白質。本研究即探討神經醯胺在細胞層級的作用機制,以及利用阿茲海默症模式小鼠J20做為動物模式,探討在其離乳後給予神經醯胺是否可改善記憶缺失。結果顯示初級培養神經細胞給予神經醯胺刺激後,會使CaMKII磷酸化,且活化轉錄因子CREB以及活化Erk。而以目前的研究參數進行的實驗則發現神經醯胺並不會使神經細胞中鈣離子濃度產生變化。另外在更下游與表觀遺傳相關修飾的研究則發現給予神經醯胺可以使H3K4甲基化成H3K4 me3,並提高Egr1的表現量。將神經醯胺以皮下注射給予阿茲海默症模式小鼠J20,對小鼠的一些基本參數如體重、葡萄糖耐受性、發炎指標GOT、GPT以及組織切片觀察,發現給予神經醯胺並不影響上述生理參數。在動物行為方面,神經醯胺並不改善小鼠的焦慮行為,但可觀察到透過莫氏水迷津所檢測之短期空間記憶有顯著的進步。綜合以上,神經醯胺能使神經細胞中和記憶相關的蛋白質活化,且改善阿茲海默症模式小鼠J20的短期空間記憶,表示早期給予神經醯胺可能有助於學習與記憶的能力。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

地塞米松(dexamethasone, DEX)是一種人工合成的糖皮質固醇(synthetic glucocorticoids),數十年來被廣泛用作抗發炎藥物 (anti-inflammatory drugs)。同時也用來治療及預防出生體重過低 (extreme low birth weight, ELBW)早產兒的慢性肺部疾病 (chronic respiratory disease)。許多研究指出,新生兒時期的地塞米松治療 (neonatal dexamethasone treatment, NDT)可能對早產兒的情緒 (emotional)和認知 (cognitive)功能產生長期不良的作用。 我們先前的研究指出NDT於雄鼠與雌鼠身上,均會造成長期的不良影響,包含類憂鬱行為(depression-like behavior)的增加,以及雌性大鼠海馬迴 (hippocampus)中α型雌激素受體 (estrogen receptor alpha, ERα)和G蛋白雌激素受體 (G-protein coupled estrogen receptor, GPER so-called GPR30)的表現量下降,且可能為NDT對雌鼠造成長期不良影響的重要原因。我們本研究中驗證是哪一種雌激素受體,為造成NDT青少年雌鼠長期不良反應的主因。 本實驗中使用新生的Wistar大鼠,從出生後第一天到第三天 (postnatal day 1~3, PND 1-3),給予劑量遞減式 (tapering)的DEX皮下注射,自PND 1-3其劑量依序為0.5、0.3和0.1 mg/kg。 於六周齡時,利用開放空間試驗(open field test, OFT)評估NDT大鼠自發性運動功能(spontaneous activity),另外透過強迫游泳試驗 (forced swimming test, FST),評測NDT大鼠的類憂鬱行為。 此外,準備平行組(parallel group)的NDT大鼠,於相同周齡時進行即時聚合酶鏈鎖反應 (real-time polymerase chain reaction, qPCR)評估海馬迴中Erα, Erβ, Gper, Grin1, Grin2a, Grin2b等基因表現。並利用西方墨點法(western blotting)評估mitogen activated protein kinase (MAPK) 的蛋白質表現量及其磷酸化水平(phosphorylation level)。 亦進行了離體胞外電生理記錄 (in vitro extracellular recording),測量海馬迴以高頻刺激誘導的長期增益作用(high frequency stimulation-induced long-term potentiation, HFS-LTP),以評估其海馬迴的神經可塑性(neuroplasticity)。最後利用強迫游泳試驗,以評估投予ERα致效劑(agonist),是否對NDT大鼠具有抗憂鬱(anti-depressant)的功能。 實驗結果顯示,NDT動物青春期前的體重顯著降低,這證明DEX的有效投藥。 OFT的結果顯示NDT動物的自發運動功能未受影響。FST的結果顯示NDT會導致類憂鬱行為的增加。雌性青少年大鼠NDT組的不掙扎的時間(immobility)與對照組相比有顯著增加。而雄性青少年NDT大鼠,則必須先給予高台曝露(platform exposure)之急性壓力處理後,其不掙扎的時間才有顯著增加。qPCR結果顯示,雌性青少年NDT大鼠海馬迴中Erα的表現顯著降低,而Erβ 和 Gper表現量則無明顯差異。NDT雄性青少年大鼠海馬迴中Erα, Erβ 及 Gper的表現量,與控制組間相較,皆無呈現顯著差異。雌性青少年NDT大鼠海馬迴中Grin1, Grin2a 及 Grin2b表現量皆沒有呈現差異。電生理實驗結果顯示NDT母鼠的海馬迴HFS-LTP有顯著下降的現象,而輸入和輸出曲線比值(input/output curve ratio, I/O curve)結果顯示,NDT老鼠與對照組相比有顯著下降的現象。而在配對脈衝促進 (pair-pulse facilitation, PPF) 實驗結果中並無呈現顯著差異。透過表面灌流 (suprafusion) ERα致效劑丙吡唑三醇 (propyl pyrazole triol, PPT)後,NDT雌性大鼠的海馬迴HFS-LTP恢復至正常範圍。而預先投予ERα的拮抗劑methyl-piperidino-pyrazole (MPP),可以阻擋PPT對HFS-LTP的恢復效果;而NDT組經皮下注射PPT後,其不掙扎的時間明顯減少,與對照組相比無顯著差異,顯示其具有降低類憂鬱行為的效果。最後我們利用GPER的致效劑同時為ERα和ERβ的抑制劑氟維司群(fulvestrant)進行驗證,投予fulvestrant無法使NDT雌性大鼠的海馬迴HFS-LTP恢復至正常範圍。 西方墨點法結果顯示,NDT並未影響雌性青少年大鼠海馬迴中MAPK 的蛋白質表現量及磷酸化水平。 綜合上述實驗結果,我們推論NDT青少年雌性大鼠的不良反應,較可能是藉由影響ERα的表現而造成。實驗結果可供後續臨床研究參考,例如投予PPT治療NDT所造成的長期不良反應。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

背景簡介:FMR1 (fragile X mental retardation 1) 基因位於人類的Xq27.3基因座,當其CGG核苷酸重複序列 (nucleotide repeat) 過長時,將會造成X-染色體脆折症 (fragile X syndrome, 簡稱 FXS)。現已開發出可用於研究FXS的斑馬魚 (Danio rerio) 突變品系,相較於囓齒類動物,斑馬魚具有快速發育、幼體透明和高繁殖力等研究優勢。前人的囓齒類動物研究發現,FMR1突變與發炎反應間存有關聯,特別是壓力條件下的細胞激素 (cytokine) 和c-Fos的表現。已知二甲基亞碸 (dimethyl sulfoxide,簡稱DMSO)為一種的消炎藥 (anti-inflammation drug),具有多種免疫調節效果和臨床應用。 本計劃藉由建立清晰的FMR1突變行為和基因表達表型後,來探討DMSO當作治療FXS藥物的可能性。 研究方法:利用顯微鏡觀察受精後 (post-fertilization, dpf) 三天大幼魚的心率和體長,以評估DMSO處理對FMR1突變品系胚胎及幼體發育的影響。採用公開性的「深度學習軟件」,進行多動物同時自發性運動跟踪法 (multi-animal locomotor tracking),分別對幼魚進行2分鐘 (n = 10) 及對成魚進行5分鐘 (n = 5) 的記錄及分析。通過觀察幼蟲的趨態性 (thigmotaxis) 和淺水內聚性 (shoal cohesion) 來評估幼魚的數焦慮行為 (anxiety-like behavior),並使用新型水箱潛水模式 (novel tank) 對成魚進行焦慮評估。利用C-start反射評估幼魚的學習行為通過觀察幼蟲的趨態性 (thigmotaxis) 和淺水內聚性 (shoal cohesion) 來評估幼魚的焦慮程度,並使用新型水箱潛水模式 (novel tank) 對成魚進行焦慮評估。利用C-start反射評估幼魚的非聯結型學習行為 (non-associative learning),而成魚則採用抑制性逃避模式 (inhibitory avoidance) 來評估學習反應。並以2項選擇模式 (two choice paradigm) 來評估成魚的社會興趣反應 (social interest paradigm)。最後透過定量聚合酶連鎖反應 (quantitative PCR) 評估全腦中FMR1和細胞激素 (cytokines) 的基因表現。 實驗結果:突變品系成魚的行為表型分析顯示,同型合子 (homozygotes) 出現過動的反應 (hyperactivity),異型合子 (heterozygotes) 對陌生魚的社會興趣 (allospecific social interest) 增加,同型合子中的焦慮反應及恐懼學習(fear learning)減少。DMSO的長期投予最佳濃度為0.05%,可恢復突變品系幼魚的趨態性(thigmotaxis)和淺灘凝聚性 (shoal cohesion) 行為表型。在5-dpf時觀察到誘導的C-起始反射 (strike induced C-start) 的減少,暗示該濃度的DMSO對毛細胞可能具有潛在的毒性,然而在7-dpf的幼魚身上,並未呈現空間運動的異常。該濃度的DMSO投予能夠改善突變品系成魚的焦慮和學習缺陷等行為表型。儘管DMSO處理不能使FMR1的表現恢復到正常水平,但能顯著改善c-Fos及適度改善細胞激素因子 (IL-1β,IL-6和IL-10) 的表現。 結論:本計劃的結果顯示,1)FMR1突變品系的同型合子為適合的FXS動物模型,2)DMSO的使用可減少突變品系幼魚的異常行為,3)DMSO可降低突變品系成魚的異常行為,並使其腦中發炎反應基因 (inflammation genes) 表現減少。 討論:突變品系成魚的運動,焦慮和恐懼學習結果與以前的囓齒動物和斑馬魚FXS模型大致相同。但在社會興趣的結果有差異,前人報導將突變品系對同種 (cospecific) 的興趣大於同種異體 (allospecific)。在幼魚實驗中的一些新發現,包括FMR1突變體在5-dpf時明顯的非聯結型學習 (non-associative learning) 障礙,焦慮以及淺灘凝聚力的增加。過去的文獻推測的腦部發炎反應基因增加,本計劃發現FMR1 KO樣本腦中神經炎症基因被下調。進一步探討特次腦區的特異性表現 (region-specific expression),特別是在端腦內側和外側大腦皮層 (telencephalic medial and lateral pallium) ,可能會得到與囓齒類動物一致的結果。

  • 學位論文

腦側化(cerebral lateralization)是指左右邊大腦半球(cerebral hemisphere)各會偏重執行(dominate)某些特定功能,為一種脊椎動物常見的現象。這種功能性的腦側化(functional lateralization)又可追溯至左右腦結構,或是特定分子於左右腦分佈的不對稱性(asymmetric)。許多文獻指出上丘腦(epithalamus)是探討斑馬魚腦部結構的不對稱(structural asymmetry)之重要標的。副松果體位於(parapineal)上丘腦中,正常情況下,該核團約有98%的機率會位於左腦中,僅少部分「腦反轉」個體(brain inversed)其副松果體會位於右腦。本計劃比較一般個體及腦反轉個體間,外顯行為及兩側端腦功能差異,結果將有助於了解斑馬魚腦結構不對稱性對,於腦功能側化的影響。 目前已知功能性腦側化會體現於個體的認知(cognition)、情緒(emotion) 和學習與記憶(learning and memory)等面向。本研究利用腦側化反轉斑馬魚,探討整合結構不對稱性對情緒與認知的影響。本研究分別使用野生型(wild-type, WT)及foxd3:GFP品系的基因轉殖(transgenic, TG) 斑馬魚作為實驗對象,該TG品系斑馬魚的副松果體會表現外源性的綠色螢光蛋白(exogenic green fluorescence protein, GFP),故可藉此判別副松果體位置,以篩選出正常(無反轉)的左側副松果體個體(left-side parapineal, Lpp)及腦反轉的右側副松果體個體(right-side parapineal, Rpp)個體。研究包括了四階段的行為實驗(behavioral experiment),第一階段是基礎運動能力測試,用以確認各實驗動物的自發性游動(locomotor activity test)是否正常,基礎運動功能正常的個體,方能進入下一階段實驗。第二階段實驗為類焦慮行為(anxiety-like behavior)測試,本研究選用新穎性水箱測試(novel tank test),交叉比對不同組別實驗動物的類焦慮行為表現。第三階段則為抑制性逃避學習測試(inhibitory avoidance test),檢核腦反轉對恐懼記憶(fear memory)的建立是否有差異。第四階段則是利用腦反轉的TG斑馬魚,探討隨著腦構造反轉後,其功能性腦側化及偏重執行的外顯行為是否同樣出現反轉的現象。 實驗結果顯示,腦反轉個體(Rpp)的運動功能與學習能力未受影響,但類焦慮行為明顯增加。在認知功能方面,對無反轉斑馬魚(Lpp)施以右側端腦破壞,會干擾空間及恐懼學習能力,故推測其與野生型斑馬魚相同,空間及恐懼的學習主要由右側端腦所主導,而腦反轉的斑馬魚(Rpp)則轉變為左側端腦主導。因而可推論斑馬魚的功能性腦側化將隨腦部發育反轉,而發生左右顛倒的情形。我們相信端腦功能性側化確實存在於斑馬魚的學習和記憶過程中,但該現象是來自於先天形生(innated)的神經迴路?或是後天經驗學習後(acquired)才逐步建立?仍有賴進一步探討。本研究也觀察到即使對端腦進行較小面績的破壞,但倘若破壞到較關鍵的部位,仍會對空間和恐懼學習造成顯著的損害。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。