透過您的圖書館登入
IP:3.142.124.252

中央大學環境工程研究所學位論文

國立中央大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

本文於2013年春季分別於中南半島生質燃燒源區泰國清邁山區(海拔1,536公尺)及台灣鹿林山大氣背景監測站(海拔2,862公尺)進行氣膠採樣。研究目的是分別探討近生質燃燒(BB)源區及背景點傳輸老化氣膠特性,此外,本文也彙整2010-2013年中南半島及2003-2013年鹿林山氣膠特性,探討兩地中、長期氣膠化學特性及來源貢獻。 研究結果顯示2013年清邁PM10氣膠受PM2.5氣膠主導,BB事件日PM2.5氣膠水溶性離子以硫酸根離子及銨根離子為優勢物種,氣膠碳成分以OC3及EC1-OP為主,水可溶有機碳(WSOC)佔有機碳比例為61%,二元酸以Oxalate濃度最高,至於氣膠單醣無水化合物則明顯以左旋葡萄糖為主。生質燃燒指標物種nss-K+、OC3、EC1-OP及Levoglucosan彼此間相關性判定係數R2都達0.6以上(N=38),印證本地區氣膠受BB影響。利用特定氣膠成分比值性質,可推測PM2.5氣膠來自開放式森林燃燒,燃燒樹種可能混合軟木及硬木,燃燒狀態為燜燒狀態。2010-2013年中南半島近BB源區氣膠成分各年代比例接近,陽離子、陰離子、有機碳、元素碳佔PM2.5質量濃度平均比例分別為 5.7±0.6%、12.2±1.3%、40.9±4.1%和 7.4±1.0%,應可代表中南半島BB PM2.5氣膠主要成分比例。 彙整2003-2013年鹿林山PM2.5氣膠觀測資料顯示:生質燃燒(BB)類型質量濃度、水溶性離及碳成分濃度都高於其他氣流類型,特別是生質燃燒指標物種如:nss-K+、NO3-、OC3、EC1-OP、levoglucosan等特別凸顯。非生質燃燒(NBB)類型的水溶性離子比例則高於BB類型,表示偏向受到人為污染。利用碳成分優勢物種、char-EC/soot-EC及OC/EC比值,也可確認BB類型氣膠的BB特徵和NBB類型的偏向來自機動車輛排放影響。 利用2010年及2013年上風處(泰國清邁)及下風處(鹿林山)觀測數據,顯示nss-K+、OC3及EC1-OP的比例變化較其他成分穩定,適合當作BB長程傳輸氣膠指標物種。本文利用穩定生質燃燒物種nss-K+¬探討氣膠傳輸老化特性,顯示NH4+、NO3 、SO42-、OC1、OP及二元酸部分物種在傳輸過程有增益現象,單醣無水化合物則在傳輸過程會有降解現象。 Positive Matrix Factorization (PMF)解析出2003-2013年鹿林山逆推BB軌跡類型PM2.5氣膠污染源共有6個主要類型,依高低序分別為BB mixing secondary aerosol (28.9%)、BB (26.3%)、BB mixing sea salt (15.0%)、BB mixing Dicarboxylates (14.7%)、BB mixing soil dust (9.1%)及Vehicle emissions (5.9%),PMF來源推估顯示約94% PM2.5質量濃度來自BB煙團在長程傳輸過程混合其他污染源。在NBB期間,PMF解析出4個主要污染源,其中二次氣膠貢獻PM2.5質量濃度最多達70.2 %,氣流多半源自於海洋(包含大平洋與南中國海),也有少許氣流混合海洋及人為污染物來自於中國大陸沿岸並透過低層大氣傳輸至鹿林山。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究主要將含有p-Nitrophenol之溶液,以O3結合UV及H2O2之高級氧化程序進行礦化處理,並以總有機碳(Total Organic Carbon; TOC)作為p-Nitrophenol之礦化效率指標。於不同高級氧化程序, p-Nitrophenol礦化效率排序為:UV/O3>UV/O3/H2O2>O3>O3/H2O2>UV/H2O2,最佳p-Nitrophenol礦化效率之高級氧化程序為UV/O3程序(78.1%)。 於UV/O3程序,實驗結果顯示隨著H2O2注入劑量之增加, p-Nitrophenol之礦化效率隨之減少。H2O2在UV/O3程序主要扮演 掠奪者之角色。於O3程序,控制H2O2注入劑量為0~31.60 mg/min,實驗結果顯示H2O2注入劑量3.95 mg/min時對p-Nitrophenol礦化提升之效率最為顯著,於UV/O3程序,分別控制反應過程之pH值為3.0~10.0,實驗結果顯示控制pH值時皆優於未控制pH值,其中pH值為10.0礦化效率最佳。另以初始反應濃度10~100 mg/L,實驗結果顯示隨著初始反應濃度增加,p-Nitrophenol礦化效率及轉化率隨之降低。 由實驗結果可觀察到UV/O3程序礦化p-Nitrophenol之過程並非單純之一階反應(First-order reaction),而是擬一階反應(Pseudo first-order reaction);擬一階反應常數(kobs)介於0.0032~0.0175 min-1之間,隨著H2O2注入劑量增加,擬一階反應常數(kobs)隨之降低;不同pH值之擬一階反應常數(kobs)介於0.0158~0.0291 min-1之間,控制pH值為10.0時具有最佳之反應速率;不同p-Nitrophenol初始反應濃度之擬一階反應常數(kobs)介於0.0134~0.0806 min-1之間。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究利用環保署設置於新竹市、新竹縣及苗栗縣的六個空氣品質監測站2008至2012年的監測數據,並配合全國排放清冊[TEDS]竹苗地區污染物排放清單,以評估同時段之空氣品質及趨勢,瞭解空氣污染管制在竹苗空品區的成效,釐清氣象因子的影響,探討各個監測站的污染形成,並在此基礎上提出未來污染管控的重點。 就空氣污染物的排放方式而言,2008至2012年竹苗空品區的固定源污染物排放以工業源貢獻最大,其次為營建源,工業源尤其是印刷電路版製造業,營建源為車輛行駛揚塵最為重要。移動源的排放主要集中在公路運輸排放,尤其是自用小客車和大貨車的排放,這應該是未來污染防制的重點。從主要空氣污染物濃度監測結果來看,各個監測站在不同時間尺度上呈現不同特點。如就年平均濃度來看,各站之污染指標並未出現顯著的下降或上升趨勢;就季平均濃度而言,夏季各站污染普遍較輕,而冬春二季則顯著高於其它各季節;就月平均而言則更加複雜,SO2沒有明顯規律的波動,而O3濃度全年在4~5月和9~10月期間呈現雙高峰分布期,PM濃度在3~4月份有明顯抬高,這可能與大陸沙塵的長程傳輸有關。就影響空氣污染物形成及擴散的氣象因子而言,各監測站各污染物對各氣象因子的敏感性存在顯著差別。另外本論文也透過對PM2.5與CO、O3、NOx、SO2的相關性分析,探討各監測站空氣污染物濃度與移動源和固定源的相關性。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

現行法規對於水污染源管制,採以被動管制之許可制度為主要政 策。然針對屢遭陳情案件應確實掌握污染源排放時機並配合主動稽查, 方能立即達水污染改善之成效。惟以往水污染稽查方式,皆僅以人力 稽查為主,稽查人員至污染現場由於難以得知污染排放之頻率及水質 特性,且水污染事證往往稍縱即逝加上地形、人力、時效性及污染源 追蹤等限制致無法於短時間內蒐集相關污染事證,故僅能對廠內是否 取得排放許可證或是否依照許可證核定內容進行操作等行政管制面 進行稽查,然此稽查模式並未能達到稽查作業所期望達成之水污染改 善成效。 本研究針對食品製造業、洗衣業、印染整理業及金屬表面處理業 等4 類屢遭民眾陳情業別以科學儀器輔助傳統稽查進行效益分析,藉 由無人飛行載具過濾污染範圍後,藉由水質連續自動監測設備掌握各 業別排放頻率、時段及水質特性,並利用地下管線探測設備搭配變焦 式管道檢視評估系統進一步蒐集及確認污染事證。 經研究案例分析顯示,於廠外進行監控,皆能使稽查人員掌握主 要污染時段,並於第一時間進場查核,各案例進行查核後,皆發現污 染事實。經分析科學儀器輔助之優劣狀況及成本效益,發現使用科學 儀器輔助傳統稽查對於污染源查核之效益不小,不僅成本較單純人力 稽查更為低廉,更能於短時間即充份掌握污染事證,採以突擊式稽查 皆能一舉達成污染搜證之目的,以提升水污染管制效益,另配合告發 處分及輔導改善,皆可有效減少水污染排放、降低陳情案件發生並有 效嚇阻不法業者。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究旨在探析我國高級中學學生「環境教育認知」。為達成研究目的,首先整理環境教育相關文獻,與二回合德菲法調查,以建構正式測驗,並針對我國高級中學學生進行抽樣調查,共回收3,305份問卷,有效問卷回收率達80.78%。 經描述性統計、t考驗、單因子變異數分析、二因子變異數分析及單因子多變量變異數分析等方法加以統計、分析與討論。研究獲得下列結論:一、「環境教育認知」測驗具有足夠的的信度及效度,各分測驗重測信度達.73(p<.001)以上,並以二回合德菲法專家問卷建立專家效度。二、不同個人背景變項的高級中學學生「環境教育認知」有顯著差異,以「男性」高於「女性」、「高年級」高於「低年級」、「高中」高於「高職」。三、本測驗以3,305份有效樣本建立測驗常模,可有效評估受試者在「社會領域」、「自然領域」及「生活領域」等三領域「環境教育認知」的優劣。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

細懸浮微粒(PM2.5)質量和化學成分可用於評估空氣品質、人體健康風險以及污染源管制成效。由於以手動採樣和自動監測方法量測PM2.5質量濃度存有差異,為探討手動和自動儀器量測差異原因,本文於2012年12月17日~2013年8月19日,在台灣北、中、南部環保署空氣品質監測站-新莊、崙背和前鎮站,使用BGI PQ 200 (以下簡稱PQ 200)和Thermo R&P 1405-F FDMS (以下簡稱FDMS)量測PM2.5質量濃度,並使用Thermo R&P 2300 (以下簡稱R&P 2300)量測PM2.5化學成分。在2013年5月20日~6月30日增加Met One Super SASS (以下簡稱Super SASS)和URG 3000N量測PM2.5成分濃度,探討不同手動採樣器採集PM2.5化學成分和修正誤差的差異,對於PM2.5污染來源,本文使用受體模式PMF (Positive Matrix Factorization)並以CPF (Conditional Probability Function)結合污染源貢獻高濃度和風速、風向驗證鄰近污染源影響。 研究結果顯示新莊和前鎮站PQ 200和FDMS差異(以下表示為FDMS-PQ 200)與PM2.5濃度變化有不錯的線性相關;崙背站則是與大氣溫度有弱相關。進一步探討發現新莊和前鎮站(FDMS-PQ 200)和FDMS的 Reference MC有中等程度相關性,崙背站則無相關性。考慮PQ 200和FDMS不同的溫、濕度操作條件,發現崙背站PQ 200和FDMS 的Base MC差異主要來自兩種方法量測的PM2.5含水量不同,前鎮站則是受PQ 200採樣微粒留存的半揮發性離子濃度有關。 R&P 2300和不同採樣配置的Super SASS量測PM2.5質量濃度並無顯著差異。裝設前置denuders可避免酸、鹼性氣體干擾後續沉積微粒,因此,沒有裝設denuder的Super SASS對半揮發性水溶性離子如:NH4+和NO3-的第一張鐵氟龍濾紙和第二張Nylon濾紙量測值都是最高。Nylon濾紙可吸附微粒揮發氣體,因此,SASS 2N第一張Nylon濾紙量測值Cl-最高,第二張Nylon濾紙量測的揮發Cl-則是最低;第一張Nylon濾紙量測值NO3-雖不是最高,但第二張Nylon濾紙量測的揮發NO3-則是最低。在碳成分量測方面,第一張濾紙量測的PM2.5 OC 以Super SASS 最高,R&P 2300次之,URG 3000N最低,EC則無顯著差異。這是受濾紙表面速度(URG 3000N> R&P 2300>Super SASS)影響,因為高濾紙表面速度可降低大氣中揮發性有機物的吸附。值得注意的是,Super SASS使用靜置現場空白估計石英濾紙吸附VOCs,這會低估吸附OC,高估微粒揮發OC,導致修正PM2.5 OC值偏高。 新莊站前兩季PM2.5成分以SO42-為主,後兩季則是修正OC濃度最高;崙背站第一、二和四季成分以SO42-為最高,第三季是NO3-濃度最高;前鎮站第一、二和四季主要成分是SO42-,第三季以修正OC濃度最高。使用PMF (Positive Matrix Factorization)推估並以CPF (Conditional Probability Function) 輔助驗證新莊、崙背和前鎮站污染來源,新莊站以secondary sulfate和gasoline emissions貢獻PM2.5最大,崙背站以secondary nitrate and sea salt和biomass burning貢獻PM2.5最大;前鎮站則主要為secondary nitrate和secondary sulfate。PMF模式模擬要求數據要有100筆以上,比較新莊站103和40筆數據PMF解析結果,發現使用較少數據雖然仍可解析,但在分離PM2.5化學成分到不同污染來源剖面上會有所受限,無法明確辨識污染源類別間的差異。 綜合彙整結果,PM2.5自動和手動儀器方法質量濃度差異受微粒半揮發物質揮發和含水量影響, FDMS Reference MC在冷季會高估微粒半揮發性物質的揮發,這在溫、濕度變化大的台灣,將會導致FDMS高估PM2.5質量濃度。沒有裝設denuder的採樣器會收集到較高濃度半揮發性水溶性離子,PMF解析結果顯示secondary sulfate、secondary nitrate和gasoline排放對台灣PM2.5濃度有顯著貢獻,降低前驅污染來源排放有助於改善PM2.5空氣品質。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

傳統上已有許多物化方法可用來移除溶液中之重金屬,然而工業廢水的多樣性,要得到較佳的金屬離子去除率是相當困難而且成本昂貴的。目前已有許多研究致力於發展低成本、可再利用且對環境友善之生物吸附劑來移除溶液中的有害物質。 本研究利用台灣濕地常見浮水植物 (布袋蓮、水芙蓉及浮萍),探討其對金屬離子之吸附成效。本研究主要分為兩個部分,一為將植物製備成吸附劑並對其進行改質探討其對金屬離子之吸附成效;二為水耕試驗,將植物栽種在含銅工業廢水之溶液中,觀察其生長情形與水溶液中銅離子濃度之變化。 由實驗結果可得知植物所製備而成之吸附劑表面羧基與氫氧基含量越多,對金屬之吸附效果越好,經過 NaOH 改質活化後之吸附劑較其他改質劑效果佳,因 NaOH 可移除植物表面雜質使羧基與氫氧基得以裸露,由 FTIR 圖譜可看出具有明顯羧基與氫氧基之吸收波峰。經過吸附後,羧基與氫氧基之吸收波峰明顯消減許多,表示吸附劑主要是藉由表面羧基與氫氧基使重金屬鍵結於其上而達到移除重金屬的目的。 浮生植物在 20 mg/L 之 Cu2+ 溶液中生長,隨著時間的增加,水溶液中 Cu2+ 濃度逐漸下降,大約在第 4 ~ 5 天該濃度已降至銅之放流水標準 3 mg/L 以下。經質量平衡得知水溶液中減少的 Cu2+ 與植物體內增加的量大約一致,但植物體內若累積過多的 Cu2+ 時則會造成浮生植物的毒害,甚至死亡。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本文於2013年春季在鹿林山背景觀測站(以下簡稱為鹿林山,2,862 m)與夏季龍潭空品測站(以下簡稱為龍潭)以即時氣膠水溶性監測儀(Particle-Into-Liquid-Sampler coupled to an Ion Chromatograph, PILS-IC)觀測PM2.5氣膠水溶性離子,並收集站址觀測的PM2.5質量濃度、PM2.5散光及吸光係數、氣膠粒徑分布、氣膠總數目、氣體污染物動態變化。 結果發現在鹿林山觀測的三次雲霧事件,CO、NOx有隨時間上升的趨勢,推斷是平地氣體污染物受到山下氣流抬升至鹿林山而形成雲霧,此時氣膠質量濃度、散光及吸光係數、氣膠粒徑分布及總數目都有相對應的增大或變化。氣膠水溶性離子NH4+、SO42-、NO3-有明顯高濃度出現,NH4+並顯示是由NH3轉化而來。NH4+與SO42-有中度以上相關性(R2>0.64),因此,這兩種離子結合型態可能為硫酸銨或硫酸氫銨。從過剩ExNO3-與過剩ExNH4+計算判斷NO3-生成機制 (Mwaniki, et al., 2014; Schlager, et al., 1990),發現在不同時段分別有HNO3 (g) 凝結在氣膠表面、N2O5水解、以及硝酸銨氣膠的形成。 鹿林山觀測的生質燃燒事件(biomass burning, BB)中CO、NOx、O3、PM2.5質量濃度、PM2.5散光及吸光係數、氣膠總數目都有增高現象。NH4+和SO42-在大多數時間關聯性很好,而且K+有顯著的濃度增加。在五次BB時段有六次雲霧事件,其中四個雲霧事件經由K+增益量判斷,雲霧與生質燃燒氣團來源相同。生質燃燒氣團長程傳輸的硫酸鹽轉化比值(Sulfur oxidation ratio, SOR)可達0.9,顯示硫化物主要以SO42-形式存在。SO2在各次生質燃燒事件都沒有明顯的濃度增加趨勢,表示生質燃燒不會產生大量SO2且SO2來自遠端各方面污染源經過了大氣的均勻混合。 龍潭為平地測站,觀測期間發生光化反應時,NH4+、SO42-、NO3-濃度增加,PM2.5佔PM10比重上升至50%,表示有細粒徑氣膠產生。另外,龍潭在高濃度硝酸鹽時段,除了正午是受到光化反應外,在夜間推測是受到外地傳輸及混合層降低的影響;由於NH4+和NO3-有中度以上相關,推論龍潭光化與高濃度硝酸鹽事件是以硝酸銨為硝酸鹽主要組成。由於夏季生質燃燒活動較少,龍潭Knss+/NO3-與Knss+/SO42-數值明顯低於鹿林山,而且SOR和硝酸鹽轉化比值(Nitrogen oxidation ratio, NOR)也是受到污染物傳輸路徑較短的緣故,普遍低於鹿林山。 比較Aerosol Inorganic Model II (Clegg et al., 1998a, b)模擬的氣膠含水量(Aerosol Water Content, AWC)和鹿林山吸濕差異移動度粒徑分布儀(Humidified Scanning Mobility Particle Sizer, H-SMPS)量測的氣膠吸濕參數(κ),生質燃燒氣團由於會帶來大量較不吸濕的含碳氣膠使κ值低,但雲霧事件也可能因氣膠吸濕粒徑變大超過H-SMPS量測上限,使得剩下所採集氣膠都是較不吸濕因而降低κ值,整體而言,生質燃燒事件κ值仍較雲霧事件低。然而,在氣膠含水量方面,因生質燃燒氣膠有高濃度SO42-、NO3-,因此鹿林山生質燃燒事件模擬的AWC是大於雲霧事件。龍潭高濃度硝酸鹽事件κ值與AWC模擬都高於光化事件,由於龍潭高濃度硝酸鹽事件SO42-、NO3-相加總濃度是高於光化事件,這指出SO42-、NO3-是主導κ值與AWC的重要因子。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。