透過您的圖書館登入
IP:13.58.216.18

中央大學環境工程研究所學位論文

國立中央大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

本研究根據文獻,選用低亨利常數有機化合物作為研究標的,主要探討內容為,觀察此類化合物之揮發速率、比較有機化合物間質傳係數( KOL )於不同環境條件下之差異,及同類型之有機化合物同時存於水中時是否會發生揮發競爭的現象,另外也加以探討化合物特性及官能基於不同環境條件下,質傳係數( KOL )之變化。本研究以半密閉系統之模廠,在不同氣、液擾流下,測量低亨利常數有機化合物之質傳係數(KOL),再將所得之結果,比較化合物間揮發速率的差異。   根據研究結果顯示,所選擇之低亨利常數有機化合物均能符合一階反應,並利用所得到的揮發速率常數值(k),以質量平衡反應式求得質傳係數(KOL)。由所求得之結果可以發現,這些低亨利常數有機化合物,其質傳係數(KOL)與亨利常數成正比關係,且會隨著擾流強度增加而上升,其中以風速影響最為顯著,而當亨利常數值相仿時,化合物的揮發速率也會因物化特性的不同而有所差異,最後,將同類型有機物混合,同時存於水中時,化合物彼此間會互相干擾,產生揮發競爭的現象。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

隨著世代的不斷演進,人們由農業社會進入工商社會後,生活型態、產業結構、消費行為及建築特性的變遷下,室內空氣品質問題應運而生。高層建築大樓之室內環境中,人員的活動、設備與化合物質的使用以及建物本身結構的問題,都可能成為室內環境污染的來源。 近年來,隨著國人對於室內環境(空氣)品質意識的抬頭,政府機關亦著手修訂國內室內空氣品質之相關政策,並持續推動及法令制定,而「室內空氣品質管理法」也於100年11月8日經立法院三讀通過,並於當年11月23日由總統公布實施。 本研究利用「辦公大樓室內空氣品質評估查核表」,先行針對使用空間進行室內空氣品質預測,結果顯示空氣品質「不良」與「差」的區域佔31.03 %,實地進行建築大樓各樓層使用空間的量測作業,二氧化碳濃度超過室內空氣品質標準的樓層數佔總樓層38 %;總碳氫化合物也有44%的樓層數超過室內空氣品質標準;部分樓層之PM2.5達到47.77 µg/m3,PM10也累積至77.91 µg/m3皆超過室內空氣品質標準。經由健康風險分析,大樓內的「呼吸系統」危害佔72.73 %,比「心血管系統」(7.27 %)與「眼睛」(3.64 %)都高出許多。 針對既有建築大樓在不變更空調系統與人員作業模式下,執行三項改善計畫,包括「空調循環系統改善」、「軟焊作業區改善」及「IAQ查核表改善」。改善成效皆能降低氣狀污染物與粒狀污染物的整體濃度,相對也降低人員的健康風險。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

2005年美國德州的英國石油煉油廠發生蒸氣雲爆炸,異構化工場在開爐過程中一座分離塔排放出高可燃性的輕質油料,引發火警及數次爆炸,造成15人死亡、170 人受傷,是美國近年最嚴重的工安意外,加上同年12月英國Buncefield油庫發生嚴重火災和爆炸事故,火勢蔓延五天,造成約2,000人緊急疏散,這兩個重大事故發生於美國製程安全管理法規頒布13年後,震驚全球,並引起了英、美兩國化工產業主管機關的注意,要求徹查製程安全管理相關法規的落實。英國石油德州煉油廠事故發生後,由美國前國務卿貝克組成的獨立調查小組所發表的貝克報告影響製程安全管理深遠,也開啟了製程安全思維的轉變,報告的第一項建議即為製程安全領導,高階主管有效的領導及參與,被認為製程安全管理關鍵的成功因素。 本研究參考了英國能源協會頒布的高階製程安全管理架構及OECD頒布的以公司治理推行製程安全管理架構與英國製程安全領導小組頒布的製程安全領導能力原則等文獻,說明了製程安全領導原則及單元建置步驟,在英國石油德州煉油廠蒸氣雲爆炸及英國Buncefield油庫火災爆炸等重大事故後,石化和煉製產業發達的政府和業界也希望可以藉由這些慘痛的案例記取教訓,特別是在高雄地下管線爆炸發生後,也提供了台灣化工業一個學習的機會。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

台灣電路板產業成長至今已超過40年,並在2010年海內外產值產量已經站上世界第一。巨幅發展的同時也衍生大量的電子廢棄物。由於科技產品推陳出新的速度加快,壽命短暫,全球電子廢物數量也因而大幅增長。目前該類廢棄物之處理與資源化方法分為金屬及非金屬成分。金屬部分以回收資源化為主,非金屬成份幾乎以焚化和掩埋的方式來處理,對環境帶來負面的衝擊。本研究利用FR-4等級之廢棄印刷電路板的非金屬成分作為原料,使用三種不同的化學改質方法,將此原料製備成吸附劑,藉由改變不同改質影響因子,如:改質劑量、時間與溫度等變數對吸附劑表面性質之影響。隨後探討吸附劑的基本組成、表面元素、官能基鍵結量的多寡及對重金屬(Pb2+、Cu2+)之吸附效果,以提供印刷電路板之非金屬成分資源化之可能方向。實驗結果得知N、HPCB經KOH活化、胺類及醇胺類試劑改質後,吸附量有大幅提升趨勢。由 FTIR及EDS結果可看出改質吸附劑表面存在羧基、氫氧基及氨基,顯示重金屬可鍵結在官能基所提供之未共用電子對上,達到移除重金屬目的。其中,利用乙二胺為主改質劑製備而成的EPCB表面官能基以氨基為主。吸附結果顯示在pH = 4.5時,鉛的吸附量之順序為:APCB1 >TPCB1 >DPCB;在pH = 5時,銅的吸附量之順序為:TPCB1 >DPCB1 =EPCB。此外,對重金屬的吸附量大小順序為:鉛 > 銅。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

自然環境下,污染物通常為無機及有機物同時存在。一般土壤攜帶負電且對金屬離子具有高親和力,對於有機污染物則礙於有機質含量及土壤水分含量導致吸持性不顯著。傳統土壤改質劑雖可增加土壤有機質含量且提高對有機污染物之吸持能力,但是,對金屬離子並不具親和力。 本研究選用五種分別含有不同官能基與不同碳鏈之改質劑,利用陽離子交換法進行人造黏土改質,藉由改質劑的特殊構造及官能基,使得改質土壤可同時吸附/吸持無機與有機污染物。由實驗結果可以發現,改質後的土壤藉由特性分析以了解改質前後之差異,X 光繞射儀的分析可以得知層間距離從15 Å增加至18~53Å,觀察出層間距離的增加與改質劑之碳鏈長度長短及添加量有極大的相關性。利用傅立葉紅外線光譜儀得知,經改質後的黏土表面較未改質者增加烷基碳鏈、羧機等官能基之特徵波峰,且利用重鉻酸鉀迴流法檢測其有機碳含量,證明已成功將黏土改質成功。土壤以有機相分佈之方式吸持BTEX,而改質後黏土提供良好的分佈介質,由吸持結果可觀察出改質劑的結構與疏水性分佈環境會影響BTEX的吸持,且分佈常數(Kd)與有機碳含量有明顯的相關性存在。由於改質黏土經由離子交換法鍵結於土壤表面,使得部分吸附位置被占據且改質劑提供的官能基量不多,造成吸附量較未改質時低,但仍達成本研究之目的,製備出得以同時吸附重金屬及有機污染物(BTEX)的改質黏土。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

奈米科技是近年來最炙手可熱的產業之一,越來越多的奈米產品被應用在工業與日常生活中。然而,隨著奈米科技的蓬勃發展,奈米材料的潛在毒性也逐漸受到人們的重視。許多研究人員投身其中,致力於了解奈米物質的傳輸與毒性機制,期望能提供政府機構未來制定相關法規的參考資料。過去奈米物質毒性實驗中大多採用沉浸式in vitro的方式,此方法雖然操作較為簡單且成本較低,但近年來越來越多研究人員對此方法提出質疑,認為應用此一方法所進行的生物毒性實驗無法完全代表暴露物質原本的毒性強弱。氣液介面式暴露技術能克服傳統沉浸式暴露的缺點並可模擬真實情況中微粒與人類呼吸道的暴露行為,故許多學者開始採用此一方式進行生物毒性實驗,但氣液介面暴露技術仍然存在部分尚未釐清的疑慮,本研究目標即為觀察氣相奈米銀微粒沉浸於液相之後其物化特性的變化程度,並實際建立一套靜電式氣液介面(ESP-ALI)暴露系統進行生物毒性實驗,再與沉浸式實驗結果相比及討論兩種實驗方法的差異性。 氣相奈米銀微粒沉浸於兩種不同溶液(DI水與DMEM-H medium)後,其粒徑大小皆有明顯上升的趨勢,顯示氣相奈米銀微粒沉浸於液體之後會發生劇烈的聚集行為。界達電位方面,沉浸於DI水的奈米銀微粒維持在-20至-30 mV,DMEM-H medium的奈米銀微粒則維持在-5至-15 mV,細胞介達電位多為負值,奈米銀微粒與生物接觸機率降低。銀離子釋出實驗方面,暴露四小時後,DI水中銀離子濃度可達0.8至1.5 ppb,DMEM-H medium中銀離子濃度為3.5至5.1 ppb,此一範圍的銀離子濃度足以造成部分生物死亡,此外,DMEM-H medium中的無機鹽類會與銀銀子結合,故DMEM-H medium的銀離子濃度會隨存放時間增長而下降。 實際應用ESP-ALI暴露系統於生物實驗方面,本研究所建立的暴露系統於暴露時間三小時以內可使細胞活性維持在80%以上。實驗結果顯示本研究所觀測的幾項生物指標(死亡率、細胞自我吞噬與細胞凋亡),ESP-ALI暴露系統皆僅需低於沉浸式實驗的劑量即可誘發相近程度的毒性反應,表示沉浸式實驗確實存在劑量高估的疑慮。細胞壞死方面,應用沉浸式暴露法僅需更低劑量便可誘發細胞產生細胞壞死,顯示不同暴露方式會導致受測細胞死亡機制不同。 本研究實際觀測了氣相奈米銀微粒沉浸於液體之後的物化特性變化,並比較兩種不同暴露方式(ESP-ALI與沉浸式)實驗結果的劑量差異,未來將持續改進ESP-ALI暴露系統效能與穩定性,期望提供更為準確的生物毒性實驗方法。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

水資源問題在最近幾年已經漸漸的受到世界各地的關注,其中在人類生活會影響到的水質問題中,水中含氮物質像是硝酸根離子、亞硝酸根離子、氨氮等物質的減量或去除也將會是個重要的課題;本研究是透過以碳氣凝膠紙當作電極,並利用電容去離子機制去除硝酸根離子,並透過不同外加電壓以及不同的初始硝酸根離子濃度,瞭解外加電壓與離子濃度對碳氣凝膠紙的電容去離子系統有何影響。結果顯示,當初始硝酸根離子濃度為100 ppm且外加電壓從0.8 V上升到1.2 V時,硝酸根離子的電容去離子量(電容吸附和還原與脫附量的總合)從2.30 mg/g上升到5.18 mg/g,這是來自電容吸附量隨電壓提高而提高(0.43 mg/g上升到4.58 mg/g),而硝酸根離子還原與脫附量則沒有明顯變化。當初始硝酸根離子濃度從10 ppm提高到200 ppm且外加電壓為1.1 V或1.2 V時,電容吸附量從1.34 mg/g上升到4.48 mg/g,但當初始硝酸根離子濃度提高為500 ppm時,電容吸附量僅剩下2.62 mg/g。以本系統而言,在低初始濃度(10 ppm)時,去除硝酸根離子的效率可達50.53%。本系統的碳氣凝膠紙經過四次反覆充放電後,第四次的電容吸附量還能有第一次的90.9%左右。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究之主要目的在探討巨大孔徑幾丁聚醣膜的製備及其表面特性改質對酵素親和性之影響並藉由薄膜上金屬的摻合作為架橋,再將其固定於具特定生化功能的酵素以了解固定化酵素再利用之可行性。此外本研究亦針對幾種於生化和環境污染物降解上應用廣泛之酵素進行固定化基礎和應用研究,以解決目前固定化基材孔洞過小,易碎無法成形,不耐酸鹼以及再利用性和親水性不佳等缺失。 本研究以矽膠為固定支撐物並利用相轉化的製備方法將幾丁聚醣交聯於矽膠表面以形成巨大孔徑的幾丁聚醣薄膜。幾丁聚醣膜作為固定基材之前其表面必須先以高分子化合物進行交聯以使幾丁聚醣膜表面功能化。實驗結果顯示在製備巨大孔徑之幾丁聚醣膜時所利用之幾丁聚醣與粒徑為60-200 µm矽膠比例為1:25時為最佳製備條件,利用PMI測得平均孔洞大小為0.1623 µm,推論係因幾丁聚醣分子結構交互作用而使分子內之氫鍵產生作用,當矽膠含量增加則Si-O-Si 的吸收更加強烈,隨著矽膠含量的增加,孔洞強度明顯增加。利用不同之交聯劑(1,4 butanediol diglycidyl ether、Glutaraldehyde及 Epichlorohydrin)交聯幾丁聚醣膜,1,4 butanediol diglycidyl ether與 Epichlorohydrin需先開環以利與幾丁聚醣產生交聯,利用 FTIR測得之-OH、-NH2等官能基伸縮強度為最強,推斷此三種交聯劑皆有多個線性相互鍵結形成網絡結構,因此可以更有效地使幾丁聚醣膜上之官能基發揮到最佳效果。以13C NMR分析鑑定,可以確定改質後幾丁聚醣膜本身的官能基增加,以未改質之幾丁聚醣膜為基準,利用交聯劑1,4 butanediol diglycidyl ether之胺基為4.88 ,Glutaraldehyde之胺基為0.14 ,Epichlorohydrin之胺基為3.20。羧基的部分以1,4 butanediol diglycidyl. ether改質後之羧基為2.73 ,Glutaraldehyde改質後之羧基為1.34 ,Epichlorohydrin改質後之羧基為4.43,推論 1,4 butanediol diglycidyl ether及Epichlorohydrin開環後大部分接枝於幾丁聚醣膜矽膠上,因此可測得大量的胺基,但 Glutaraldehyde僅測得少數胺基,可能係由於大部分的胺基與幾丁聚醣膜相互反應所造成之結果。 游離與固定化酵素的活性實驗發現,游離Laccase之最適活性為pH5(8.01 %),在摻合不同交聯劑後最適活性以 Epichlorohydrin為pH 7(4.46 %)之效果最佳,推論是因為其於Epichlorohydrin交聯時的官能基羧酸增加而無法有多的空間固定化Laccase所致。游離Tyrosinase之最適活性為pH 5(1.74 %),在摻合不同交聯劑後最適活性1,4 butanediol diglycidyl ether為pH 7(0.45 %)之效果最佳,可能是因為幾丁聚醣會吸附H+離子,使固定化酵素對於H+離子產生斥力,若Tyrosinase與幾丁聚醣膜之距離愈近,則固定化酵素對於H+離子之斥力越大,因此需要更高之H+離子濃度。 固定化酵素再利用實驗,藉由FTIR觀察幾丁聚醣膜交聯改質前後官能基的變化,證明交聯劑與幾丁聚醣膜上的胺基產生鍵結。當金屬溶液pH值愈小,胺基質子化程度愈高,可架橋金屬離子的胺基數目就愈少使得金屬離子的吸附能力降低,但固定Tyrosinase後於低pH值(pH3)時的效果最佳,推測經固定Tyrosinase的幾丁聚醣膜其胺基減少而羧酸官能基增加。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

在傳統廢水處理系統中,雖然已引進大量之監測裝置,但卻無法提供控制系統判斷之依據與確保系統運作過程中異常現象之排除,進而導致系統處理效率與效益不彰。因此,透過自動控制系統之建立,並藉由及時監測資訊作為即時回饋控制修正與判斷之依據,不僅可確保系統出流水水質之穩定性,同時亦可提升系統處理效率與效益。 本研究是利用pH、ORP、DO及MLSS等及時監測資訊以進行系統異常分析與判斷。針對其異常現象之判定以制定一套程問題解決標準化之流程步驟,並藉由即時回饋控制以修正操作策略,進而建立連續流循序批分式活性污泥之自動控制系統。藉由系統物件觀、系統觀、事件觀之分析方式,將系統劃分為三層級之架構,以界定其系統、夥同系統及內部子系統之組成、結構、架構、因果及作用機制,並蒐集其劃分之資訊以確實瞭解監測資訊之變動其所代表之意義。接著,根據藉由物質濃度變化與pH、ORP及時監測資訊變動建立數學關係式,以作為系統預警性異常或即時異常判斷之依據。最後,透過系統異常之確立,可針對異常之現象透過問題瞭解、問題求解及問題解決之步驟程序以進行問題分析,並藉由問題分析之產出而即時修正系統之操作策略,進而建立自動控制系統,以滿足與符合系統之需求。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

汞由於其獨特的化性,已被認定為是全球性污染物。目前已知釋放至環境中的汞,主要是人為活動所產生,尤以燃煤發電廠及焚化廠的貢獻量最大。氧化態的無機汞因其大氣停留時間相對短暫,被排放後將因乾濕沉降作用回到地表,並有機會被環境中某些特定的厭氧菌群轉化成為毒性更強的甲基汞,之後再經食物鏈的累積放大效應而對生態與人類造成健康威脅。以往的觀念中,甲基汞所帶來的毒害問題幾乎都是經由對魚類海鮮的攝食所造成;然而,近期的文獻顯示,生長在離汞排放源相近田地上的稻米已被檢測出含高濃度的甲基汞,暗示著除了一般所認知的水域生態系統外,陸域生態系統中的食物也可能成為甲基汞的攝食途徑之一。由於稻米是台灣,也是許多亞洲地區人民的主食,雖然藏於米粒內的汞濃度或許不高,但若以長期攝取的總量觀點來看,其對健康所帶來的影響值得關注。為此,對於水稻田為何易成為甲基汞生成的環境,環境生地化的作用與循環機制如何涉入其過程,以及特定(潛在)排放源對於鄰近地區的水稻田系統的甲基汞累積效應為何,有待進一步的研究與探討。 本研究以台中火力發電廠周圍的水稻田為研究場址,對其表水、表土、根際土與其孔隙水、以及場址內收成之稻米進行總汞、甲基汞及可能影響汞甲基化反應之地化參數進行分析,盼藉此明瞭汞於現地場址的生物有效性程度,並同時將現地根際土壤當做植種源進行縮模試驗,搭配汞甲基化基因作為生物標記,進一步分析現地根際圈內可能的主要汞甲基化菌群。除此之外,也藉由水耕植栽試驗,在調控稻作培養液內不同甲基汞的配位化學條件下,初步探究孔隙水的化學組成對於稻作吸收與累積甲基汞的效應為何。調查結果指出,由現地不論是根際土、根際土壤之孔隙水、表面土以及稻米的總汞與甲基汞濃度來看,相較於過去文獻與法規值,本研究所挑選鄰近台中火電廠的兩水稻田場址均屬於未受汞污染之地區,推測一直以來台中火力發電廠對於廠內所設置的與汞排放相關之空氣污染防治措施應相當完善,使得排出的廢氣並未對鄰近的水稻田農地造成汞污染與累積。而根據地化參數分析、縮模試驗及分生試驗的結果得知,水稻田在覆有表面灌溉水的生長期間,根際土內具有最高的微生物活性以及汞的生物可利用性,且硫酸鹽還原菌群可能為現地主導汞甲基化的主要菌群。總結上述調查結果,暗示著覆水的水稻田為具有高汞甲基化潛勢的場址,因此一旦場址在水稻生長期間受到外來汞污染,其根際土環境很有可能會將無機汞進一步轉化成甲基汞,進而造成場址內甲基汞的生成及後續稻米內的累積問題。最後,水耕植栽試驗的結果指出不同型態的甲基汞確實會對稻作的吸收造成影響,且由結果初步推測稻作吸收甲基汞的背後可能同時隱含著被動擴散與主動運輸等機制,但實際為何仍有待後續的研究進一步確認。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。