透過您的圖書館登入
IP:18.221.15.15

中央大學電機工程學系學位論文

國立中央大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

本論文主要內容為探討表面氮化鎵披覆層對於氮化鋁銦/氮化鎵電晶體元件特性的影響,期能利用此披覆層改善傳統氮化鋁銦漏電流和崩潰特性不佳的問題。利用一維Poisson方程式模擬具不同表面披覆層厚度之材料電子濃度和能帶,並使用TCAD模擬不同磊晶層在截止偏壓下之電場分佈。模擬指出相較於表面沒有披覆層之結構,表面具有一26 nm披覆層後,其二維電子氣濃度會因為導電帶抬升而降低,靠近汲極端的閘極邊緣電場峰值則由15.16 MV/cm降低到2.22 MV/cm。此反極化效果因可抬升能帶,降低閘極漏電流,分散電場,故使元件之截止態崩潰電壓大幅提升。   本研究所製作的高電子遷移率電晶體(蕭基接面場效電晶體)之直流和動態特性顯示,表面具有26 nm披覆層的元件具有一低開啟電阻(2.68 mΩ-cm2),其最低的截止態漏電流為114 μA/mm,最大的截止態崩潰電壓為172 V。在具有13 nm表面披覆層的結構上製作具二氧化矽閘極絕緣層的金氧半場效電晶體,崩潰電壓可進一步提升至675 V。實驗結果顯示,氮化鎵表面披覆層除了可降低元件閘極電場,更能有效降低電流崩塌效應與動態電阻值。此外,藉由變溫動態電阻量測,磊晶缺陷的活化能亦有初步推估結果。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

動態隨機存取記憶體(dynamic random access memory, DRAM)為電子系統中關鍵的元件之一。一個DRAM單元(cell)是由一個電晶體和一個電容所構成。其中,電晶體被用於存取電容,藉由在電容中的電荷量來表示儲存在DRAM單元中的資料。由於漏電電流的關係,DRAM需要週期性地復新(refresh)以確保儲存資料的正確性。然而,復新操作是一個需要消耗功率的動作,在DRAM功率消耗上占了很大的部分。因此,發展有效的復新功率降低技術對於設計低功耗的DRAM是非常重要的。 多樣復新週期(multiple-refresh-period, MRP)的方法是有效的復新功率降低技術之一。使用多樣復新週期方法,DRAM可以使用不同的復新週期去刷新DRAM的區塊(block)。然而,如何識別每個DRAM區塊各自的復新週期是一個問題。因此在本論文的第一部分,提出一個復新週期分類測試(refresh period classifying test, RPCT)方法來識別DRAM區塊的復新週期。並且,提出一個內建自我測試(built-in self-test, BIST)設計用來支援所提出的復新週期分類測試方法。由分析結果觀察可知,與既有的方法相比,所提出的測試方法可以使用較短的測試時間去識別DRAM區塊的復新週期。因此,所提出的測試方法與既有的方法相比可以降低35.2%到30.9%的測試時間。 為了提升多樣復新週期方法的有效性,在本論文的第二部分提出一個位址重映射(address remapping)的方法用以減少在一個DRAM區塊中DRAM列(row)的復新週期的多樣性。換句話說,所提出的位址重映射方法可以增加在DRAM中DRAM區塊的復新週期的多樣性,使得在使用多樣復新週期方法時可以降低更多的復新功率消耗。並且,提出一個位址交換演算法(address swapping algorithm)來產生位址重映射表(address remapping table)。最後,提出一個內建自我測試電路來實現所提出的位址重映射方法。由分析結果觀察可知,對於DRAM有256個區塊和16個可定址內容記憶體(CAM)條目的情況下,所提出的位址重映射方法可以節省26.62%的功率消耗。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

近年國人飲食習慣西化,中風病患的數量逐漸增長,復健成為醫院主要項目之一,而復健的過程中需要可量化的評估指標來呈現病患的復健情況,因此希望藉由肌電訊號(Electromyography, EMG)觀察病人復健時肌肉的出力情形,透過肌電訊號可得知肌肉收縮強度的大小,進一步分析將能提供治療師重要的量化評估指標。研究首先利用以NI儀器所建構的肌電感測系統測量27位中風病患復健前、後的肌電訊號,其中11人以傳統方式進行復健,另外16人透過虛擬實境進行復健,把肌電訊號的結果與慣性感測和醫師復健評估量表的結果互相比對,驗證肌電訊號RMS與CI指標之可靠性,在實驗結果中發現對於發病超過6個月後以虛擬實境方式進行復健的8位病患,有7位皆呈現進步的情形,顯示虛擬情境對於復健療程的效果有一定程度上的幫助,並將27位中風病患的復健前後肌電訊號與復健前後沃夫動作功能評量分數進行比對,發現其中18位有相同進步或退步的趨勢。本研究以XBee傳輸模組搭配STM32系統板發展一套輕量化多通道的無線肌電感測系統,體積從原本舊系統的10.5cm × 5cm × 6cm縮小為6cm × 2.5cm × 3cm,重量從101.3g降為30.6g,以LabVIEW設計即時分析的觀測介面,透過圖形顯示呈現每個通道即時的肌力強度,即時CI指標讓使用者瞭解肌肉間的收縮關係,並以燈號回饋告知使用者是否使用正確的肌肉區塊。系統開發完成後,為測試訊號品質,利用本系統與Shimmer公司已商業化生產的無線肌電量測系統和以SIOC實驗板搭配Zigbee為基礎的舊系統進行量測二頭肌的肌電訊號SNR比較實驗,結果顯示本系統的SNR為28.69dB,舊系統的SNR為28.10dB,而Shimmer肌電量測儀器的SNR為28.97dB,顯示本系統訊號品質比舊系統好,且與Shimmer肌電量測儀器相近,並對三套系統輸入相同的正弦波訊號,分別計算各自的SNR,本系統的SNR為21.39dB,舊系統的SNR為19.41dB,Shimmer系統的SNR為22.65dB,結果與二頭肌的肌電訊號SNR比較實驗呈現相同的趨勢,另外也進行肌肉疲勞指數的測量;在八顆感測器穩定度實驗中,感測器的訊號SNR均在28dB左右,變動率最高僅0.63%,說明訊號不會隨不同顆感測器而有太大差異。接著對5位健康個案(5男, 年齡23-25歲)和5位中風(4男1女, 年齡分別為56、28、64、45與28歲)病患進行多顆感測器的量測,針對前舉、外展與手肘彎曲90度動作量測手臂與肩頸的肌電訊號,並比較健康個案與病患的差異;另一方面比較同一病患於本系統與NI系統的CI指標分析結果,顯示以本系統量測時病患的手臂抬高角度較高;最後將5位病患透過新系統與NI系統所量測到的肌電訊號RMS最大值進行樣本T檢定,結果顯示五位病患使用兩種不同系統所量測到的資料沒有顯著差異(p > 0.05),說明以新系統量測能在不影響實驗結果的情況下提升使用者的動作流暢度與行動力。以上在本系統的量測過程中使用者皆可透過觀測介面中即時CI指標與燈號得知肌群出力模式,總結以上結果顯示肌電訊號不僅能以RMS評估病患肌耐力回復程度,計算中位數頻率得知肌肉疲勞情況,且經由多通道肌電訊號的量測並分析CI指標可觀察不同動作肌肉間的出力模式,評估病患的協調性。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

為了提升追蹤目標物的速度和解決目標物被遮蔽的問題,本論文採用改良的粒子最佳化演算法“自組織隨時調變係數的粒子最佳化演算法”來對目標物進行追蹤。 HPSO-TVAC演算法主要利用族群之間各個成員的相互關係,使族群整體朝向更好的目標前進的一種演算法,並利用改良的自適應搜尋框,使搜尋框大小在追蹤目標追蹤不到的時候變大,在一直能追蹤到追蹤目標時,保持較小的大小,使粒子們能搜尋得更加精確,並能有效解決遇到遮蔽物的情況。 改良的種子區域成長法,主要是改良產生種子的部分,使原本標記出來需要重新搜尋四鄰位置的種子數量減少,其目的是讓我們區分不同的目標物,並使各個目標物各自連成一塊,使我們可以算出各個目標的中心位置。 本論文使用背景相減法以分離背景和移動目標,改良的種子區域生長法區分各個不連通的目標物,並且算出各個目標的中心位置,利用顏色直方圖來建構目標物的模型,以HPSO-TVAC來對各個目標物進行追蹤。最後比較其他不同的演算法進行模擬測試,並且將HPSO-TVAC實際測試於即時的多目標追蹤。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文以微型化寬頻六埠網路接收機前端電路為主題,以威爾金森分波器、直交耦合分波器及功率偵測器組成六埠網路接收機前端電路,並經由增加級數,以及使用集總元件構成橋式T線圈取代傳輸線,同時達到寬頻與微型化的效果。電路的製做上,則以平衡式電感與平行板電容,於積體被動元件(IPD)製程中實現微型化之橋式T線圈作為基本組件,進而能以系統級封裝方式實現寬頻六埠網路接收機之前端電路。 電路設計上,首先以積體被動元件實現各式橋式T線圈做為測試電路, 驗證橋式T線圈電路模型與萃取方式之可行性。接著將橋式T線圈應用於威爾金森分波器設計,以大幅縮小電路尺寸而不減損頻寬,並分別實現二級與四級寬頻威爾金森分波器。其中二級威爾金森分波器中心頻率為2.2GHz,電氣尺寸僅惟中心頻率下之0.024λ0×0.020λ0,頻寬則為120%(反射損耗大於15dB);四級威爾金森分波器中心頻率設計於12GHz,頻寬可達173%(反射損耗大於10dB),電氣尺寸僅為中心頻率下的0.136λ0×0.047λ0。寬頻直交耦合分波器方面,二級直交耦合分波器中心頻率設計於1.95GHz,電氣尺寸僅為中心頻率0.028λ0×0.018λ0 ,頻寬則為53.8%(反射損耗大於15dB);三級直交耦合分波器中心頻率為2.2GHz,頻寬可達83.6%,電氣尺寸僅為中心頻率下之0.045λ0×0.021λ0。 最後,將威爾金森分波器、直交耦合分波器與功率偵測器整合成六埠網路接收機前端電路,分別實現2.6GHz之微型化六埠網路接收機前端電路(電氣尺寸0.05λ0×0.067λ0)與中心頻率1.95GHz之寬頻六埠網路接收機前端電路,其電氣尺寸為0.227λ0×0.147λ0,頻寬則為64.1%(反射損耗大於10dB)。 本研究透過橋式T線圈有效縮小電路尺寸,再藉由多級電路設計有效提升頻寬,進而達成實現微型化寬頻六埠網路接收機的設計目標,可助於將六埠網路接收機技術導入次世代手持式無線通訊裝置。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本博士論文主要提出應用於高頻本地振盪系統中,微波及毫米波寬頻高效率頻率倍頻器(frequency multiplier)之設計與分析。首先提出兩個利用砷化鎵異質接面雙極性電晶體及高速電子遷移率電晶體製程(GaAs HBT-HEMT process)實現之頻率倍頻器。一個以共閘級/共源級場效電晶體對為基本架構的寬頻高效率頻率二倍頻器(frequency doubler),其輸出3 dB操作頻率可達8至30 GHz。利用共閘級/共源級平衡式架構的反相特性可省略平衡至不平衡轉換器(balun)的使用,進而縮小晶片面積並減少設計複雜度。在8 dBm的輸入功率下,此頻率二倍頻器在頻寬內可達到轉換增益高於-4 dB及基頻抑制能力優於13 dB的能力。量測輸出飽和功率大於10 dBm。此頻率二倍頻器與過往發表寬頻頻率倍頻器相比,可達到一極佳優化指數(FOM),其值為25.14。接著提出一個應用在Ka頻段單晶石砷化鎵異質接面雙極性電晶體及高速電子遷移率電晶體之頻率四倍頻器(frequency quadrupler)。此四倍頻器基本架構為利用兩級修正共基極/共源級平衡式頻率倍頻器串接而成。在此製程下,不同的電晶體組合組態均已對直流偏壓、諧波輸出功率、轉換增益及轉換效率探討並做優化設計。為了減少電晶體輸出相位誤差及更進一步改善基頻抑制能力,兩組相移器(phase shifter)被應用在電路之中。實驗顯示,輸入功率為4 dBm時,此四倍頻器在操作頻率為23至30 GHz之間,轉換增益可優於-1 dB。在28 GHz輸出頻率下,轉換增益最高為2.7 dB,轉換效率及功率附加效率分別大於8及3.6%。最大輸出飽和功率大於8.2 dBm。晶片面積為2x1 mm2。 接著提出一個平衡式砷化鎵異質接面雙極性電晶體及高速電子遷移率電晶體頻率三倍頻器(frequency tripler),3 dB操作頻率為10.2至12.6 GHz。在此電路中,一對共基極/共射極異質接面雙極性電晶體被使用為諧波產生器,以期輸出奇次諧波為反相,偶次諧波為同相。接著利用兩個帶通濾波器來抑制三倍諧波外的其他諧波,增進諧波抑制能力。在輸出使用一個共閘級/共源級主動式平衡至不平衡轉換器將三倍諧波同相相加,提供可能的轉換增益。最後,在輸入端使用一個設計在三倍頻的LC共振器進一步提昇轉換增益。實驗顯示,此三倍頻器的轉換增益為2.8 dB,3 dB頻寬比為21.2%,頻寬內的基頻抑制能力優於47 dB。 最後介紹兩個使用不同轉導提昇(Gm-boosted)技術的頻率二倍頻器。首先提出一個應用在V頻段90奈米互補式金氧半導體製程(90-nm CMOS process)頻率二倍頻器,其使用技術為主動式共源級轉導提昇技術。當轉導提昇技術使用在頻率倍頻器時,因為輸入電壓擺幅等效提昇,可減少輸入驅動功率,因此有效提昇轉換增益。此頻率二倍頻器可達到-3.3 dB的轉換增益,3 dB頻寬比為26.5 %。輸出頻率為60 GHz時,量測輸出飽和功率大於0.8 dBm。接著,利用0.18微米矽鍺雙載子互補式金氧半導體製程(0.18-um SiGe BiCMOS process),成功實現應用在K頻段雙重轉導提昇差動共基極頻率二倍頻器。雙重轉導提昇技術包含主動式共閘級架構和被動式電容交叉耦合(capacitive cross coupling)技術。主動式共閘級轉導提昇級為增益提昇的主要來源,而被動式電容交叉耦合能在不額外增加直流功耗的情況之下,進一步提昇共閘級轉導提昇級本身的增益。詳細的設計流程均在此體現。共源級轉導提昇級及包含交差耦合電容之共閘級轉導提昇級的電流消耗及頻寬也在此做出比較討論。根據提出的雙重轉導提昇架構,此頻率倍頻器可達到-1.3 dB的轉換增益及30.9%的3 dB頻寬比。輸出頻率為26 GHz時,量測輸出飽和功率大於4.5 dBm。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

我們已經成功作出了新型以磷化銦為基材光檢測器的詳細特性與分析。這個元件可維持穩定的外部量子效應(~74%,無抗反射層 )且操作波長在0.85μm到1.55μm下可以清楚地發現資料傳輸高達40 Gbit/sec且清楚的看到眼圖(無誤碼)。此外,和以砷化鎵為基材的光檢測器相比, 以相同速度操作在850nm波段下, 由於P型In0.53Ga0.47As作為吸收層的電洞傳輸會被消除以及極佳的電子傳輸特性,,我們能以較大的主動區直徑來達到相同的元件速度。 藉由不同主動直徑的光檢測器的量測和模擬結果明確指出,在In0.53Ga0.47As空乏層,因為輕微的電子谷間散射導致操作在1.55μm的電子飄移速度會比在0.85μm的時候要來得快(1.9 vs. 1.5×105 m/sec) 。 然而,操作在長波段有電洞傳輸慢的現象,會造成載子傳輸時間隨光電流的增加而衰減。 分別操作在短波長和長波長下,我們藉由多模光纖和單模光纖以40μm的主動區直徑達到 40Gbit/sec的無誤碼傳輸。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文主要針對在低阻值矽(111)基板上進行氮化鋁鎵/氮化鎵電晶體製作與研究,並使用新的閘極佈局方式來提升汲極電流,以降低晶片成本。而電晶體製作採用離子佈植(Ion Implant)作為元件隔絕。 論文中,當元件的汲極到源極距離為9 µm,閘極長度為2 µm寬度為104 µm的元件上,單閘極佈局元件的特性為IDSS = 762.7mA/mm, VTH = -7.4 V,而矩陣型佈局元件可以比單閘極佈局元件在相同的元件主動區面積下,得到汲極電流的提升,大約87%的增加量。若在導通電流同約為140 mA時,矩陣型佈局元件可以比單閘極佈局元件在元件主動區結節省約45%的面積。最後,深入探討單閘極元件與矩陣型布局元件間電容與熱阻特性之變化。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

論文內容提要 著眼於未來次世代電晶體元件的綠能微縮發展,量子穿隧式場效電晶體以穿隧效應產生電流,該電晶體僅需小操作電壓(約0.5 V)下即可進行工作。該元件有極佳的開關切換特性、低的次臨限擺幅、關閉時很低的漏電流與低功率損耗等優點。於矽基材半導體的穿隧電晶體開發中,有鑑於追求更低的功率損耗與操作偏壓,因III-V族半導體具有低能隙更容易產生穿隧機制獲得更低的操作偏壓。且III-V族材料有其可調控能帶接合之優點,故本論文著重於開發III-V族化合物半導體之穿隧式場效電晶體。 本論文所使用的磊晶結構為p-i-n摻雜的砷化銦鎵材料,其中銦的成分比例為53%,鎵的比例佔47%。在此砷化銦鎵的穿隧式場效電晶體結構中,為了達到穿隧機制須有p+重摻雜的源極與n+摻雜的汲極。本論文製作之磊晶晶片源極為p+型砷化銦鎵,其鈹元素摻雜其濃度為8 × 1018 /cm3,汲極部分矽元素摻雜濃度為1 × 1018/cm3,i層厚度為150 nm。 藉由濕式蝕刻穿隧式場效電晶體製程研發,以光學曝光製作微米尺寸元件,並改變氧化層材料參數。成功製作出汲極長度LD = 2 μm的元件,氧化鋁/氧化鉿EOT為2 nm,其次臨限擺幅為240 mV/dec,電流開關比達1.52 × 104,汲極導通電流為9.33 μA/μm。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文利用0.18 µm標準CMOS製程結合後製程實現850-nm矽累崩光檢測器,為了排除基板空乏區外照光而產生之擴散載子,利用後製程來蝕刻元件之背面基板,達到直接排除擴散載子之效果。透過Silvaco公司之二維元件模擬軟體研究,基板厚度的減少可改善擴散載子造成之頻率響應滑落(roll-off)的情形,進而提升3-dB頻寬。同時針對不同的元件結構設計,分別為水平式之累崩光檢測器以及P-I-N結構之光檢測器,將其操作在累崩區來做比較。最後並接著針對矽累崩光檢測器之吸光區尺寸作進一步的分析,透過金屬層區隔累崩區及吸光區,隨著吸光區寬度的減少,所收集到的光電流中擴散載子成份也會下降,使得元件之3-dB頻寬提升至8 GHz。另外也利用光脈衝響應之量測,研究不同元件對脈衝的反應,分析出長尾巴效應(long tail effect)的存在與頻寬的關係。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。