透過您的圖書館登入
IP:3.143.17.83

中央大學電機工程學系學位論文

國立中央大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

本論文內容主要探討氮化鋁鎵/氮化鎵高電子遷移率場效電晶體使用不同表面披覆層對電性的影響。實驗使用三種表面披覆層包括傳統氮化鎵披覆層(GaN cap),p型氮化鎵披覆層(p-GaN cap)和在MOCVD裡成長的氮化矽為披覆層(in-situ SiN cap)。實驗目的為利用不同的披覆層來提升元件的崩潰電壓和改善元件的動態電阻特性,並在製作蕭特基閘極元件前會先進行一系列的材料分析。 本實驗所製作的蕭特基閘極電晶體,在in-situ SiN cap元件上有低的閘極漏電流、(I_on/I_off )電流比值為1.71×108、低的次臨界斜率82 mV/dec以及有最大的元件崩潰電壓在汲極電流1 mA/mm下LGD = 20 μm約為1200 V。在動態特性方面p-GaN cap元件和in-situ SiN cap元件在汲極電壓100 V下動態電阻比值皆比GaN cap好,此兩種結構動態電阻比值分別為1.8和1.2。此外也利用脈衝量測去觀察三種表面披覆層之表面缺陷特性。 最後利用矽基板偏壓的方式去觀察元件在進行切換開關時電子被表面缺陷捕捉的情形,其中在GaN cap元件在量測上有較差的表現,電流回復到穩態時間最長,以及利用變溫量測的方式去計算缺陷的活化能。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文主要為設計及製作一個可以利用語音控制來做互動的家庭式機器人。該機器人除了具備可愛的外觀及可以置於桌上的小巧體積外,其特殊身體結構利用三個AI馬達不同的旋轉量,呈現出各種身體姿勢。同時,我們在人頭前後左右設有四個聲音感測器搭配演算法,可使機器人更精準地找出聲音源方位。此機器人有四個主要的功能,分別為簡單對話,照相,遠端監控與定時提醒。這四種功能所需要用到的配備像是7吋LCD螢幕、攝影機及麥克風皆鑲嵌於機器人頭上,而揚聲器則因尺寸關係置於機器人本體側邊。機器人可以利用麥克風接收使用者語音指令,並通過語音識別系統中之設定來完成簡單對話功能。在對話的同時,機器人除了有不同的應答動作外,螢幕也可以顯示相對應的臉部表情像是喜、怒或悲傷。在語音照相模式部分,機器人可以根據使用者的命令進行拍照,而所拍攝的照片可以通過網路被保存在雲端硬碟中。使用者可以根據在LCD螢幕上顯示的QR code連至特定網站進行照片的存取與瀏覽。我們還可以遠端控制機器人的轉動,以監測機器人週遭環境狀況。最後一種模式是定時提醒,使用者可以設定提醒時間與事項,當設定的時間到了,機器人會利用語音提醒待辦事項,伴隨著音樂及身體動作來吸引人們的注意。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文研究主軸為以懸置帶線架構實現準集總元件組成的雙工器,透過系統化的流程,依序設計組成雙工器的高、低通濾波器,逐步加入電路佈局中的高頻寄生效應、實做環境考量,與製程變異分析,而完成雙工器的設計。 論文首先介紹以高、低通濾波器組成理想雙工器之工作原理。並且針對高、低通濾波器於懸置帶線架構的電路佈局設計時產生的寄生效應進行分析,再建立考量寄生效應的修正電路模型,並由網路參數運算的方式建立高低、通濾波器中準集總元件的萃取公式。藉以於電路模擬軟體的輔助下判斷修改元件值的設計方向。 接續則提出系統化的雙工器設計方法,建立雙工器的設計,並且分別以五階與七階的雙工器實際設計範例演示設計流程。再納入量測時所須要的SMA接頭至懸置帶線轉接器設計,以及金屬外罩於製做時產生的圓孔與預留空間等實做考量於設計中,逐步完成所訂規格下的雙工器設計。最後針對製程變異進行評估,透過變異分析判斷實際製做時能夠容許的誤差範圍並且確保電路成品能夠與模擬吻合。本研究所提出之五階雙工器的量測結果,高通頻帶內植入損耗最大為為0.96 dB,低通頻帶內植入損耗最大為0.94 dB,低通與高通植入損耗響應交錯頻率15.25 GHz的植入損耗為3.8 dB,高通路徑的止帶衰減於0.8倍交錯頻率處可達39.6 dB,低通路徑的止帶衰減於1.2倍交錯頻率處達15 dB。反射損耗的部份,高通埠反射損耗於18.2-24.5 GHz均可大於13.1 dB,低通埠反射損耗於DC-14.46 GHz均可大於16.3 dB,共同埠反射損耗於DC-24.5 GHz均大於12.4 dB。電路之平面面積約為9.1×21.7 mm2( ),整體外部體積大小為21.7×18.0×22.3 mm3( )。而七階雙工器的量測方面結果,高通頻帶內植入損耗為1.25 dB,低通頻帶內植入損耗為1.22 dB,低通與高通植入損耗響應交錯頻率11.4 GHz的植入損耗為4.36 dB,高通路徑的止帶衰減於0.8倍交錯頻率處可達42.1 dB,低通路徑的止帶衰減於1.2倍交錯頻率處達36.3 dB。反射損耗的部份,高通埠反設損耗於12.1-18.2 GHz均大於12.1 dB,低通埠反射損耗於DC-10.7GHz均大於16.4 dB,共同埠反射損耗於DC-18.2 GHz均大於12 dB。電路之平面面積約為10.5×24.9 mm2( ),整體外部體積大小為25.1×20.58×16 mm3( )。最後,將電路的量測特性與參考文獻比較整理於表。 相較於既有的文獻,本論文提出懸置帶線架構準集總元件雙工器的高頻寄生效應萃取方法與修正電路架構,並納入設計流程。再針對實做與量測時須要的SMA至懸置帶線轉接器、外罩金屬組裝流程等適當配置。最後,納入製程變異判段容忍的誤差範圍,而達成將準集總元件雙工器的設計系統化的目的。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文主題在於製作以及研究單電子電晶體及其相關之應用。首先,我們使用矽鍺圖案相依性的氧化行為以及氣相化學沉積(CVD)沉積薄膜的穩定性已經成功展示以一個有組織性的方式精準地在電極間放置單一顆鍺量子點並且以對稱的二氧化矽/氮化矽複合式之穿隧介電層相隔。為了能更有效率地以選擇性氧化被定義圖案的矽鍺結構之方式來實現一顆鍺量子點單電子電晶體,以電子束微影定義圖案和以蝕刻整修溝渠形貌此兩項技術必須被最佳化設計。利用上述的技術,我們研發出一個擁有11奈米大小鍺量子點的單電洞電晶體。在溫度為凱氏溫度77度到150度的區間,此單電洞電晶體在閘極與汲極偏壓的調變下展示了沒有背景雜訊的庫侖振盪以及有著明顯節點的菱形圖。此結果意味著單電洞電晶體提供了一種方式,能透過載子穿隧量子點分裂能階的頻譜來解析量子點內部電子能階。 另一方面,基於鍺量子點單電洞電晶體在少數電洞的狀況下微分轉導(GD)突出的溫度相依性,鍺量子點溫度量計已經被展示出。微分轉導所形成的波谷萃取出的半高寬(V1/2)與量子點內的電子數(n)以及溫度(T)呈現一個線性的關係,此關係為eV1/2  (1-0.11n)5.15kBT,此關係式提供了檢測溫度的一個基準量。另外,微分轉導所形成的波谷萃取出的深度與量子點充電位能及溫度的倒數成一個比例關係,此關係式為GD  EC/9.18kBT,提供了檢測溫度的另一個基準量。這些實驗上的結果以表示我們所研製的單電洞電晶體確實是能作為一個奈米溫度量計,去偵測出量子點中的溫度變化。而且擁有10奈米大小鍺量子點的單電洞電晶體所能偵測到的最高溫度為凱氏溫度155度。並且偵測溫度的精準度能達到千分之一度以下。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

近年來的研究指出,具有寬能隙的氮化鎵材料有機會提升功率電晶體的崩潰特性,使其具有較低的導通電阻,且更適合應用於高頻系統之中。然而動態導通電阻的特性限制了目前氮化鎵電晶體的發展。 所謂的動態導通電阻,是指當電晶體受到電壓應力之後,在導通的瞬間會具有較差的導通特性,造成這樣問題的原因已有大量的研究探討,且被歸因於相當多樣且複雜的因子,這樣複雜的問題,導致嘗試解決元件動態電阻問題時,難以找到關鍵因子以有效地提出解決辦法。 本論文嘗試提出以一系統化的手法分析造成動態電阻的起因;首先討論虛擬閘極的效應,藉由兩極同步電壓切換的技術,建立元件受電壓應力後的暫態 Id – Vg 曲線,藉此以定義元件臨限電壓隨鬆弛時間的變化,此變化可被進一步的分析是與磊晶層有關的缺陷形式。第二個部分連結了漏電流與動態電阻,結果發現閘極漏電流引發磊晶相關缺陷造成的動態電阻劣化可藉由閘極絕緣層大幅改善。更進一步的,改善閘極絕緣層與氮化鎵材料系統間接面缺陷密度的結構也被提出,藉由使用原子層沉積系統沉積二氧化鋁在經高溫氧化過氮化鋁材料上,可有效降低接面缺陷密度至1.4 × 1012 to 2.6 × 1013 eV-1•cm-3。 元件在承受高電壓應力後,被離子化缺陷的密度分布狀況可藉由分析暫態電容對電壓的關係得到,結果發現,元件在承受過高電壓應力後,被離子化的缺陷密度與電場分佈有明顯的相依關係;且當電壓應力較低時,被離子化的缺陷多分佈在電場集中處,而當高的電壓應力作用在元件上時,一個廣泛範圍的缺陷會被離子化,導致嚴重的動態電阻裂化。此裂化可藉由優化金屬長板的設計分散集中電場來獲得改善。 為了解到造成元件動態電阻嚴重裂化的根本原因,三電極同步切換的技術被提出,用以研究元件緩衝層內缺陷與動態電阻裂化的關聯,結果發現,當元件承受汲極電壓應力時,若同時施以正向的基板偏壓將導致動態電阻裂化比例上升,且延長了回復所需要的時間,此趨勢與增大汲極電壓的結果相同,從模擬的結果看來,正向的基板偏壓會壓低緩衝層的導電帶能量,缺陷被填入的機率上升,進而影響動態電阻的裂化行為。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本文探討矽、鍺和氧原子之間的和諧互動機制,以精準定數和定位鍺量子點。首先,藉由矽鍺合金在高溫氧化的過程之中,會選擇性地氧化矽原子形成二氧化矽並且析出鍺原子的方法,我們可以製作出埋藏在二氧化矽中之鍺奈米晶粒。我們進一步發現在後續的高氧化或退火的製程之中,經由矽、鍺和氧之間的巧妙交互作用,可以有效地誘發已埋藏在二氧化矽中之鍺奈米晶粒的聚合成長、移動,甚至晶體形貌的變化。其中關鍵的因子有三:在鍺奈米晶粒的鄰近周遭是否有適量的含矽薄膜(或矽原子源)、是否有足夠的氧原子供應以及鍺扮演著催化劑的角色來協助鄰近含矽薄膜或矽原子源的局部氧化發生。經由實驗設計,我們發現在鍺量子點的表面存在有矽、鍺和氧彼此的競爭、破壞以及再重建的交互作用。若妥善運用此交互作用並加以設計,我們可以精準地掌控鍺量子點的成長熟化,進而控制其晶體形貌與大小,甚至設計含矽薄膜(或矽原子源)的位置以引導鍺量子點至指定之定點位置。 矽、鍺和氧之間的互動反應簡述如下:在氧化矽鍺合金形成鍺奈米晶粒後,若鍺奈米晶粒的周圍有含矽薄膜或矽原子源,鍺原子會催化分解含矽薄膜的鍵結,使之釋放出矽原子。由於矽與鍺之化學親和力相近,被釋放的矽原子會快速地移動、貼近鍺奈米晶粒的表面,並進一步與鍺量子點表面的二氧化矽發生化學反應:Si + SiO2(s) 2SiO(g),將二氧化矽分解成可揮發的SiO,並在鍺奈米晶粒前方形成空間孔洞。此空間孔洞提供了鍺奈米晶粒成長與移動的空間。此外,SiO亦可能移動到鍺奈米晶粒後方與外部提供的氧原子反應,再次形成SiO2。由於生成固體SiO2時,其體積約為原先的矽原子的2.2倍,此體積膨脹可以藉由推擠鍺奈米晶粒往前方的空間孔洞移動而獲得空間的舒緩。如此一來只要在有足夠的含矽薄膜(或矽原子源)與氧原子供應的環境下,可不斷地將鍺奈米晶粒往矽源的方向移動。 值得一提的是,矽原子的釋放與否主要是透過鍺的催化來協助周遭的含矽薄膜(如氮化矽或純矽)發生局部的分解與氧化。因此除了鍺奈米晶粒與含矽薄膜之外,在鍺奈米晶粒/氮化矽薄膜界面是否有充分的氧足以促成局部氧化反應的發生是另一重要的關鍵因子。因為氧在二氧化矽與鍺內的擴散能力明顯有別。因此,在二氧化矽之中,若鍺奈米晶粒濃度或密度過高時,鍺奈米晶粒本身也會阻擋外部氧的擴散,導致在鍺奈米晶粒/緩衝氮化矽界面處無足夠的氧濃度,也就無法催化含矽薄膜(如氮化矽或純矽)局部的分解與氧化。如此一來,既無矽原子的釋放,也就無法誘發高密度鍺奈米晶粒的移動與成長。 為解決此一問題,我們在高鍺含量的矽鍺合金和氮化矽緩衝層之間設計並插入了一低鍺含量的矽鍺合金薄膜。如此一來,不僅可有效地讓氧原子擴散到鍺/氮化矽表面誘發一系列的反應,也可藉由氧化高鍺含量的矽鍺合金來形成大顆的鍺球狀晶粒,達到有效掌控鍺晶粒尺寸的目標。 基於以上的機制,我們將填入奈米溝渠或孔洞結構中的矽鍺合金氧化後,可以成功地製備球狀鍺量子點。而且藉由調整奈米溝渠或孔洞結構的幾何結構與尺寸大小,我們可以精準地在奈米溝渠或奈米孔洞中控制其位置與數量。當多邊形奈米孔洞的內切圓半徑大於15 nm,可以將鍺量子點置放在多邊形孔洞的角落或邊緣。當多邊形奈米孔洞的內切圓半徑小於15 nm,鍺量子點則會被引導到孔洞的正中心形成一個單一的量子點。使用這種方法,我們進一步地製作出量子點共振穿隧二極體。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本論文乃是與另一位同學論文[1]合作主要目的為使用低成本的材料與零件去設計製作一個靈活的機器人頭並讓此機器人頭能與人互動。機器人頭的頸部機構設計可以有三維的運動方向,並以SolidWorks進行繪製,為了達到低成本、減輕重量的目的,我們利用SolidWorks繪製機構後,透過3D列印機列印出各頸部部件,並與[1]所設計之頭部組合,完成一個機器人頭。在頸部三維運動的裝置設計與控制上,為了減少馬達支撐頭部的負擔,頸部上下兩方安裝三角形板,中間部分使用彈簧作為支撐,兩塊三角形板的三個角鑽洞並以鋼線連結至安裝在下方盒子中的馬達,透過三個AX-12伺服馬達的收線與放線來讓彈簧彎曲和位於上三角形板的馬達轉動來達成頸部的三維度運動。在與人互動方面,本論文利用Kinect感測器與觸摸感測器從環境獲得資訊,機器人頭能自主判斷感測器之資訊並給予不同回應。本論文設計出四個主要功能來讓機器人頭與人互動,分別為:1)照相與網路相簿功能; 2)音樂歌唱功能; 3)語音辨識與說話功能; 4)觸摸與拍打回應功能。使用者可以根據[1]所設計出來的手勢來開啟所需要的功能來與機器人頭互動,其中1)照相與網路相簿功能乃是[1]之工作內容,在音樂歌唱功能方面,本論文利用MIDI、MP3與KSC資訊,讓頸部控制與嘴巴張合可以配合音樂節拍與歌詞;在語音辨識與說話功能方面,機器人頭可以成功地辨識出人所說的話,並根據所說的話來給予回應;在觸摸與拍打回應功能方面,我們利用Arduino接收觸摸感測器MPR121的資訊,讓機器人頭可以像人一樣擁有觸覺。最後,透過結合硬體機構與程式功能,來完成一個能與人互動的機器人頭。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

隨著現代醫學的發達,可攜帶的生醫訊號量測裝置是目前的趨勢,我們希望病人可以攜帶輕巧的監控裝置並可長時間的監控生理狀態。近幾年來不同生醫應用層面的生理訊號量測系統發展趨向於微小化並搭配無線方式傳輸訊號。 本篇主旨為提出一應用於生醫訊號量測系統之低雜訊前端類比前端電路,其中包含可調增益放大器與三角積分調變電路,可針對不同生醫訊號如腦波圖(EEG)、心電圖(ECG)訊號作記錄。為了將其中低頻的非理想如直流偏移電壓、閃爍雜訊等影響減小,並考量電路為on chip設計,我們設計一可調性CMOS擬態電阻用來形成極低頻之極點,克服形成低頻極點需要大電阻的問題,並且改善製程變異與共模電壓的飄移。為了降低整體電路的功率消耗及減低熱雜訊,將放大器輸入級的場效電晶體操作於弱反轉區可以比電晶體操作在飽和區有更好的表現,整體電路以高解析度、低功耗及低雜訊為設計目標。 在弱反轉技術的基礎上,我們設計一可調式壓控CMOS擬態電阻,應用於生醫放大器中可調整其頻寬。可調式壓控CMOS擬態電阻包含操作在弱反轉區PMOS與自動電壓調整電路。此可調整頻寬生醫放大器提供40.2 dB 增益、操作頻寬約9.5 kHz、輸入雜訊從6.3 Hz到9.5 kHz 約 5.2 uVrms、從 250 Hz 到 9.5 kHz 約 5.54 uVrms且只有 10.35-uW 功耗.在此電路中低頻截止頻率可調頻寬範圍為 6.3 Hz 到 600 Hz. 可調增益放大器包含偏壓電路、可調式CMOS擬態電阻、ac 耦合式帶通濾波器、共模回授電路。。在電路實現上,在輸入訊號頻率1 kHz、150 uV輸入振幅下,整體放大器增益為72 dB,而在輸入訊號200 Hz,2 mV的輸入振幅下,放大器增益為58 dB,可調低頻截止點範圍為4 Hz到300 Hz,輸入相關雜訊為3.61 uVrms,整體總諧波失真為60.21 dB,雜訊效率因素(Noise efficiency factor)為4.7。我們使用台積電0.18 uV CMOS 1P6M製程,其晶片面積約佔0.68 mm^2。在1.8 V電源供應下,整體晶片消耗之功率約為55 uW。 三角積分類比數位轉換器主要由三角積分調變器與數位降頻濾波器所組成。本文所設計之電路結合SC-SDM與SO-SDM之優點並將其整合,以低功率與高解析度為其設計標的完成一應用於所有生理訊號量測之三角積分調變器。電路實現上,在訊號頻寬10KHz、128倍超取樣率與±0.1V的輸入振幅下,所設計之二階三角積分調變器訊號雜訊失真比為86.47 dB,有效位元數達到13.97位元且整體晶片消耗之功率為318 uW。最後的量測結果顯示訊號雜訊失真比為77.57 dB,有效位元數為12.59位元。在1.8V電源供應下,整體晶片消耗之功率約392 uW。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

論文名稱:應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻 器與寬頻功率混頻器之研製 校所組別:國立中央大學 電機工程學系研究所 電波組 研究生:陳宥任 指導教授:邱煥凱 博士 摘要 本論文主要分兩部份,第一部分研究C/X頻段寬頻低功耗混頻器,共實做兩顆晶片,第一顆利用tsmcTM 0.18 µm CMOS製程,使用倍頻電路架構以獲得偶次項諧波,實現次諧波混頻器,並使用源極注入技術,提升轉換增益,最後實現一寬頻低功耗次諧波降頻器。量測結果顯示,當本地振盪功率為 -1 dBm時,轉換增益為 -8.9 dB,輸入功率1-dB壓縮點為 -10.8 dBm,二階交互調變失真點為13.9 dBm,三階交互調變失真點為 -1 dBm,雙邊帶雜訊指數為12.72 dB,頻寬為5-12 GHz,直流功率消耗為6.5 mW,晶片面積為0.788×1.165 mm2。 第一部份第二顆晶片,利用UMC 0.18 µm CMOS製程,並使用Ruthroff-type單轉雙巴倫作射頻埠輸入匹配,以得到寬頻之響應,應用切換式偏壓技術,改善雙邊帶雜訊指數,以及基極注入達低功耗之目的,量測結果顯示本地振盪功率為 5 dBm時,轉換增益為 7.7 dB,輸入功率1-dB壓縮點為 -18 dBm,二階交互調變失真點為7.7 dBm,三階交互調變失真點為 -9.9 dBm,雙邊帶雜訊指數為10.87 dB,頻寬為5.2-12 GHz,直流功率消耗為0.37 mW,晶片面積為0.765×1.444 mm2。 第二部份為設計混頻器與功率放大器結合之功率混頻器,利用tsmcTM 0.18 µm CMOS製程,使用差動式穿輸線型變壓器作耦合,實現寬頻之功率升頻器,量測結果顯示本地振盪功率為 11 dBm時,轉換增益為 20.97 dB,飽和輸出功率為15.02 dBm,輸出功率1-dB壓縮點功率為13.06 dBm,三階輸入交互調變失真點為3.26 dBm,三階輸出交互調變失真點為22.94 dBm,汲極端效率為10.3%,頻寬為5-12 GHz,直流功率消耗為171.68 mW,晶片面積為0.962×1.572 mm2。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

下一個世代的光連結(optical interconnect,OI)技術的數據速率(data rate)將會是50Gb/s,為了達到這個目標垂直共振腔面射型雷射 (VCSELs)的3dB頻寬必須達到30GHz以上,而且此元件除了在常溫特性要好之外,且在85℃時的3dB頻寬也不能劣化太多。在論文裡會探討垂直共振腔面射型雷射主動層(active layer)的設計,藉由探討不同的應力量子井設計和波長偏移量對850nm VCSEL的靜態和動態特性有什麼影響。 首先,我們比較GaAs/Al0.3Ga0.7As 和Al0.1In0.15Ga0.75As/Al0.3Ga0.7As兩種不同量子井結構的元件特性,而且此兩種元件都在相同水氧孔徑(5µm)以及相同波長偏移量(17nm)條件下做比較,結果顯示Al0.1In0.15Ga0.75As/Al0.3Ga0.7As量子井的元件3dB頻寬在室溫可以達到24GHz而85℃為 17GHz,另一方面GaAs/Al0.3Ga0.7As量子井的元件3dB頻寬在室溫只能達到20GHz而85℃為10 GHz,所以利用應力量子井可以增加垂直共振腔面射型雷射的3dB頻寬並且改善高溫特性。 為了更進一步增加3dB頻寬,我們利用較多的增益峰值(gain peak wavelength)和共振腔共振波長( etalon wavelength)的波長偏移量(~20nm)。起初這個方法是用在分佈反饋半導體雷射(DFB Laser),但分佈反饋半導體雷射需要藍移的偏移量(blue-shift detuning),藍移的偏移量的定義為共振腔波長<增益峰值波長。 然而VCSEL需要紅移的偏移量(red-shift detuning),這是因為VCSEL有比較大的熱阻,所以當電流增加時,元件熱效應會造成VCSEL有能隙窄化(bandgap narrowing)這個現象。 利用較多的波長偏移量(~20nm)以及不同銦含量的應力量子井,我們發現In0.1Ga0.9As/Al0.3Ga0.7As和Al0.1In0.15Ga0.75As/Al0.3Ga0.7As兩種應力量子井的元件在水氧孔徑較小(3µm)時,3dB頻寬都接近30GHz。但當我們把元件的水氧孔徑做大(8µm)時,我們發現In0.1Ga0.9As/Al0.3Ga0.7As量子井的元件3dB頻寬只能到達20GHz並且需要較大的驅動電流(~17 kA/cm2),而Al0.1In0.15Ga0.75As/Al0.3Ga0.7As量子井的元件只需要較小的驅動電流(~8 kA/cm2)3dB頻寬就可以到達26GHz,而且因為我們把水氧孔徑做大,可以使元件電流密度降低,也因此我們元件的可靠度會提升,這也是目前高可靠度及超高速(>40Gb/s)VCSEL所需要的特性。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。