Title

Kinetic Study of Trichloroethylene Biodegradation by Methylosinus trichosporium OB3b PP358 lmmobilized in a Fibrous-Bed Bioreactor

DOI

10.6967/JCICE.200301.0065

Authors

Amy L. Kneidel;Shang-Tian Yang

Key Words

TCE;Trichloroethylene;Methylosinus trichosporium;Biodegradation;Fibrous-bed bioreactor

PublicationName

Journal of the Chinese Institute of Chemical Engineers

Volume or Term/Year and Month of Publication

34卷1期(2003 / 01 / 01)

Page #

65 - 73

Content Language

英文

English Abstract

Biodegradation of trichloroethylene (TCE) by resting cells of methanotrophic Methylosinus trichosporium OB3b PP358, which constitutively expresses soluble methane monooxygenase (sMMO), was studied in a fibrous-bed bioreactor operated in the recycle batch mode. Cells were grown on methane as the substrate with aeration, and then used to degrade TCE through the cometabolism with sMMO in the absence of methane. Complete biodegradation of TCE was verified with the TCE and chloride ion mass balance. In general, concentration of up to ~12 mg/l, and followed the first-order reaction kinetics. TCE transformation was inhibited in the presence of methane or methanol. Without the energy source and after being exposed to TCE for an extended period, cells gradually lost most of their capability in degrading TCE, which was attributed to reduced sMMO enzyme activity due to lack of NADH and cell death caused by TCE toxicity and oxygen starvation. However, the reactor was able to recover its TCE degradation ability after rejuvenating and regrowing cells with methane and air. Compared to free cell and other immobilized cell systems, the cells immobilized in the fibrous-bed bioreactor not only showed a much higher TCE degradation rate (up to 84.77 mg/(1 day) or ~32 times of that from free cells), but also had a better tolerance to TCE (22.6 mg/l or ~11 times higher than that with free cells). With periodical rejuvenation, the bioreactor could be used for long-term treatment of TCE-contaminated water.

Topic Category 工程學 > 化學工業
Times Cited
  1. 樊孚(2012)。氣相傳輸法合成鍺-銻奈米線與三元合金觸媒之VLS成長機制。中興大學材料科學與工程學系所學位論文。2012。1-63。 
  2. 陳彥旻(2008)。生物性透水性反應牆共代謝處理三氯乙烯之研究。成功大學環境工程學系學位論文。2008。1-202。