Cooperative Diffusion Leads to a Robust Morphogen Gradient




Hong-Wei Yin;Xiao-Qing Wen;Hua-Hai Qiu;Tian-Shou Zhou

Key Words

Chinese Journal of Physics

Volume or Term/Year and Month of Publication

51卷2期(2013 / 04 / 01)

Page #

279 - 295

Content Language


English Abstract

In many developmental systems, spatial patterns of cell and tissue organization arise from morphogen gradients, which assign cellular fates according to the different thresholds of morphogen concentrations. Typically, diffusion is regarded as a mechanism responsible for the formation of morphogen gradients. Previous studies presented two opposing diffusion mechanisms, namely receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED), for explaining the range of morphogen gradients and their robustness, but the joint effect of intracellular and extracellular diffusions is unclear. Here, using partial differential equations, we model a morphogen dispersal mechanism including extracellular and intracellular diffusions. By introducing and analyzing a robustness index, we show that a properly cooperative diffusion can lead to a better robust morphogen gradient, in contrast to either RED or RMT alone. More precisely, there is an optimal cooperation of extracellular and intracellular diffusions such that the robustness and the range of morphogen gradients are optimal, respectively. Our results indicate that an appropriate cooperation between extracellular and intracellular diffusions is more beneficial to the robust formation of morphogen gradients than the simple diffusion proposed previously.

Topic Category 基礎與應用科學 > 物理
  1. G. Schwank, K. Basler, Cold Spring Harbor Perspect. Biol. 2, a0016691 (2010).
  2. H. L. Ashe and J. Briscoe, Development 133, 385 (2006).
  3. M. Affolter and K. Basler, Nature Rev. Gene. 8, 663 (2007).
  4. O. Wartlick, A. Kicheva, and M. Gonz´alez-Gait´an, Cold Spring Harbor Perspect. Biol. 1, a0012553 (2009).
  5. J. Z. Lei and Y. Song, B. Math. Biol. 72, 805 (2010).
  6. D. Lander, Q. Nie, F. Wan, B. Math. Biol. 69, 33 (2007).
  7. D. Yan and X. Lin, Cold Spring Harbor Perspect. Biol. 1, 3 (2009).
  8. M. Gonz´alez-Gait´an, Mech. Develop. 120, 1265 (2003).
  9. J. A. Fischer, S. H. Eun, and B. T. Doolan, Annu. Rev. Cell Dev. Biol. 22, 181 (2006).
  10. A. Kicheva et al., Science 315, 521 (2007).
  11. L. Wolpert, J. Theore. Biol. 269, 359 (2010).
  12. G. Schwank et al., Plos Biol. 9, e1001111 (2011).
  13. J. L. England and J. Cardy, Phys. Rev. Lett. 94, 0781017 (2005).
  14. T. E. Saunders and M. Howard, Phys. Rev. E 80, 41902 (2009).
  15. T. Bollenbach et al., Development 135, 1137 (2008).
  16. A. Eldar et al. Nature 419, 304 (2002).
  17. A. Kicheva, M. Gonz´alez-Gait´an, Curr. Opin. Cell Biol. 20, 137 (2008).
  18. D.M. Umulis, M. Serpe, M. B. O'connor, and H. G. Othmer, Natl. Acad. Sci. USA 103, 11613 (2006).
  19. S. Bergmann et al., Plos Biology 5, 232 (2007).
  20. J. B. Gurdon and P. Y. Bourillot, Nature 413, 797 (2001).
  21. E. V. Entchev, A. Schwabedissen, and M. Gonz´alez-Gait´an, Cell 103, 981 (2000).
  22. S. R. Yu et al., Nature 461, 533 (2009).
  23. A. D. Lander, Q. Nie, and F. Y. M. Wan, Developmental Cell 2, 785 (2002).
  24. A. J. Zhu and M. P. Scott, Genes & development 18, 2985 (2004).
  25. E. V. Entchev and M. Gonz´alez-Gait´an, Traffic 3, 98 (2002).
  26. K. Kruse, P. Pantazis, T. Bollenbach, F. J U Licher, and M. Gonz´alez-Gait´an, Development 131, 4843 (2004).
  27. A. Eldar, D. Rosin, B. Z. Shilo, and N. Barkai, Developmental Cell 5, 635 (2003).
  28. T. Bollenbach, K. Kruse, P. Pantazis, M. Gonz´alez-Gait´an, and F. Julicher, Phys. Rev. Lett. 94, 0181031 (2005).
  29. T. Bollenbach, K. Kruse, P. Pantazis, M. Gonz´alez-Gait´an, and F. Julicher, Phys. Rev. E 75, 011901 (2007).
  30. J.Lei, F. Y. M. Wan, A. D. Lander, and Q. Nie, Discrete Con, Dyn.-B 16(3), 835 (2011).