Title

Study on Adaptive Least Trimmed Squares Fuzzy Neural Network

Authors

Shih-Hui Liao;Ming-Feng Han;Jyh-Yeong Chang;Chin-Teng Lin

Key Words

least trimmed squares (LTS) estimator ; fuzzy neural network ; FNN ; least trimmed squares fuzzy neural network ; LTS-FNN ; adaptive least trimmed squares fuzzy neural network ; ALTS-FNN

PublicationName

International Journal of Fuzzy Systems

Volume or Term/Year and Month of Publication

15卷3期(2013 / 09 / 01)

Page #

338 - 346

Content Language

英文

English Abstract

In the largest samplings of data, outliers are observations that are well separated from the major samples. To deal with outlier problems, a least trimmed squares (LTS) estimator is developed for robust linear regression problems. It is meaningful to generalize the LTS estimator to fuzzy neural network (FNN) for robust nonlinear regression problems. In addition, the determination of the trimming constant is important when using the LTS estimator. In this paper, we propose the use of an adaptive least trimmed squares fuzzy neural network (ALTS-FNN), which applies a scale estimate to a LTS-FNN. This paper particularly emphasizes the robustness of the proposed network against outliers and an automatic determination of the trimming percentage. Simulation problems are provided to compare the performance of the proposed ALTS-FNN, with an LTS-FNN and typical FNN. Simulation results show that the proposed ALTS-FNN is highly robust against outliers.

Topic Category 基礎與應用科學 > 資訊科學