Title

個人化旅遊情境感知推薦系統之建置與應用

Translated Titles

The Establishment and Application of a Personalized Tourism Context-Aware Recommendation System

Authors

顏昌明(Chang-Ming Yan);陳心淳(Sin-Chun Chen);范玟瑄(Wen-Hsuan Fan);黃徑怡(Jing-I Huang);曾雅婕(Ya-Chieh Tseng)

Key Words

情境感知推薦系統 ; 旅遊推薦 ; 內容式推薦 ; 個人化推薦 ; context-aware recommendation system ; travel recommendation ; content-based recommendation ; personalized recommendation

PublicationName

Electronic Commerce Studies

Volume or Term/Year and Month of Publication

16卷4期(2018 / 12 / 31)

Page #

287 - 313

Content Language

繁體中文

Chinese Abstract

推薦系統現已快速發展,幾乎是成功電子化企業必備的技術,傳統推薦系統多假設使用者的喜好固定不變,但實務上使用者的喜好常會隨著周遭情境變化而改變,導致推薦結果不一定能符合使用者的期望。在全球線上購物與服務排名上,旅遊業一直高居前三名,再加上行動服務成熟,使用者在旅遊中隨著情境變化而改變喜好已是常態,但在現行研究中,探討各情境感知技術並實做於行動服務上者,仍屬少數。因此,本研究以行動裝置為平台,建置一以旅遊為例的情境感知推薦系統,說明其架構及各模組達到透過蒐集使用者喜好,在出遊前進行個人化推薦;並在行程中透過情境感知,即時推薦使用者當下最適合的新去處。本研究實作一系統並設計實驗了解使用者滿意度,透過滿意度問卷調查分析得知,本系統之滿意度在資訊內容、個人化推薦與系統價值三個構面,均較無推薦的對照組有顯著差異,表示本研究所建置之個人化旅遊情境感知系統架構,確實能提升使用者對旅遊推薦系統的滿意程度。

English Abstract

Recommendation systems (RSs) have developed rapidly and have become an almost essential technology for successful e-business. Traditional RSs assume that the user's preferences are fixed, but the user's preferences typically vary with the surrounding context, and the recommended results may not meet the user's expectations. In global online service rankings, e-tourism has always ranked in the top three, and now with the maturity and ubiquity of mobile services, it is normal for traveling users to change their preferences as their environment and locale change. However, in the literature, there are few investigations into context-aware technologies and how to implement them on mobile services. Therefore, the purpose of this study is to establish a context-aware RS based on tourism. By collecting user preferences, personalized recommendations are made before traveling. And with the help of context-aware recommendation techniques, the most appropriate new location can be recommended for users throughout their journey. The results of a satisfaction survey show that in terms of the three constructs of information design, personalized recommendation, and system value, the user satisfaction of this context-awareness RS is significantly higher than that of the non-recommended control group. This indicates that the personalized travel context-aware RS can indeed increase user satisfaction with its recommendations.

Topic Category 基礎與應用科學 > 資訊科學
社會科學 > 經濟學
Reference
  1. 曾慈慧,辛純靚,沈進成(2008)。泰國勞工在台之休閒行爲與生活滿意度影響關係之研究。運動與遊憩研究,2(4),38-65。
    連結:
  2. Adomavicius, G.,Mobasher, B.,Ricci, F.,Tuzhilin, A.(2011).Context-Aware Recommender Systems.AI MAGAZINE,32,67-80.
  3. Adomavicius, G.,Tuzhilin, A.(2005).Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,17(6),734-749.
  4. Baltrunas, L.,Ludwig, B.,Peer, S.,Ricci, F.(2012).Context relevance assessment and exploitation in mobile recommender systems.Personal and Ubiquitous Computing,16(5),507-526.
  5. Chen, G.,Kotz, D.(2000).,Dept. of Computer Science, Dartmouth College.
  6. Clark, R. N.,Downing, K. B.(1985).Why here and not there: the conditional nature of recreation choice.Proceedings-symposium on recreation choice behavior,Missoula, Montana:
  7. Dey, A. K.(2001).Understanding and using context.Personal and Ubiquitous Computing,5(1),4-7.
  8. Gokovali, U.,Bahar, O.,Kozak, M.(2007).Determinants of length of stay: A practical use of survival analysis.Tourism Management,28(3),736-746.
  9. Goldberg, D.,Nichols, D.,Oki, B. M.,Terry, D.(1992).Using collaborative filtering to weave an information tapestry.Communications of the ACM,35(12),61-70.
  10. Google, C. B. W. (2017). Trended Data. Retrieved March 31, 2018, from https://www.consumerbarometer.com/en/trending/?countryCode=TW&category=TRN-NOFILTER-ALL
  11. Gulliver, S. R.,Ghinea, G.,Patel, M.,Serif, T.(2007).A context-aware tour guide: User implications.Mobile Information Systems,3(2),71-88.
  12. Hasuike, T.,Katagiri, H.,Tsuda, H.(2016).A new recommendation system for personal sightseeing route from subjective and objective evaluation of tourism information.Information Engineering Express,2(3),1-10.
  13. Horozov, T.,Narasimhan, N.,Vasudevan, V.(2006).Using location for personalized POI recommendations in mobile environments.2006 SAINT International symposium on Applications and the Internet,Phoenix, AZ, USA:
  14. Korakakis, M.,Mylonas, P.,Spyrou, E.(2016).Xenia: A context aware tour recommendation system based on social network metadata information.2016 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP),Thessaloniki, Greece:
  15. Lang, K.(1995).Newsweeder: Learning to filter netnews.Proceedings of the Twelfth International Conference on Machine Learning
  16. Li, L.-H.,Hsu, R.-W.,Lee, F.-M.(2012).Review of recommender systems and their applications.T&S Journal Publications,6(1)
  17. Liang, T.-P.,Lai, H.-J.,Ku, Y.-C.(2006).Personalized content recommendation and user satisfaction: Theoretical synthesis and empirical findings.Journal of Management Information Systems,23(3),45-70.
  18. Lu, J.,Wu, D.,Mao, M.,Wang, W.,Zhang, G.(2015).Recommender system application developments: A survey.Decision Support Systems,74,12-32.
  19. Majid, A.,Chen, L.,Chen, G.,Mirza, H. T.,Hussain, I.,Woodward, J.(2013).A context-aware personalized travel recommendation system based on geotagged social media data mining.International Journal of Geographical Information Science,27(4),662-684.
  20. Mathieson, A.,Wall, G.(1982).Tourism, Economic, Physical and Social Impacts.Longman.
  21. Oku, K.,Nakajima, S.,Miyazaki, J.,Uemura, S.(2006).Context-aware SVM for context-dependent information recommendation.Proceedings of the 7th international Conference on Mobile Data Management,Nara, Japan, Japan:
  22. Pashtan, A.,Blattler, R.,Andi, A. H.,Scheuermann, P.(2003).CATIS: A context-aware tourist information system.Proceedings of IMC 2003, 4th International Workshop of Mobile Computing,Rostock, Germany:
  23. Payne, J. W.,Bettman, J. R.,Johnson, E. J.(1993).The Adaptive Decision Maker.UK:Cambridge University Press.
  24. Puntheeranurak, S.,Tsuji, H.(2007).A multi-clustering hybrid recommender system.7th IEEE International Conference on Computer and Information Technology (CIT 2007),Aizu-Wakamatsu, Fukushima, Japan:
  25. Rashid, A. M.,Albert, I.,Cosley, D.,Lam, S. K.,McNee, S. M.,Konstan, J. A.,Riedl, J.(2002).Getting to know you: learning new user preferences in recommender systems.International Conference on Intelligent User Interfaces, Proceedings IUI
  26. Resnick, P.,Varian, H. R.(1997).Recommender systems.Communications of the ACM,40(3),56-58.
  27. Ricci F.(ed),Rokach L.(ed),Shapira B.(ed)(2015).Recommender Systems Handbook.Boston, MA:Springer.
  28. Ricci, F.,Rokach, L.,Shapira, B.,Kantor, P. B.(2015).Recommender Systems Handbook.Springer.
  29. Robertson, T.(ed.),Kassarjian, H.(ed.)(1991).Handbook of Consumer Behaviour.Englewood Cliffs:Prentice-Hall.
  30. Schilit, B. N.,Theimer, M. M.(1994).Disseminating active map information to mobile hosts.IEEE Network,8(5),22-32.
  31. Schilit, B.,Adams, N.,Want, R.(1994).Context-aware computing applications.Workshop on Mobile Computing Systems and Applications,Santa Cruz, CA, USA:
  32. Snepenger, D.,Meged, K.,Snelling, M.,Worrall, K.(1990).Information search strategies by destination-naive tourists.Journal of Travel Research,29(1),13-16.
  33. Statista. (2016). Share of Internet Users Who Have Ever Purchased Products Online as of November 2016. Retrieved March 31, 2018, from https://www.statista.com/statistics/276846/reach-of-top-online-retail-categories-worldwide/
  34. Stewart, T. J.,French, S.,Rios, J.(2013).Integrating multicriteria decision analysis and scenario planning-Review and extension.Omega,41(4),679-688.
  35. Tung, H.-W.,Soo, V.-W.(2004).A personalized restaurant recommender agent for mobile e-service.2004 IEEE International Conference on e-Technology, e-Commerce and e-Service,Taipei, Taiwan:
  36. 交通部觀光局(2016)。觀光統計圖表。存取日期:2017 年 12 月 27 日,取自:http://admin.taiwan.net.tw/public/public.aspx?no=315。
  37. 李麗華,李富民,詹尚驥,周裕健(2009)。以學術部落格為主之個人化推薦系統。資訊科技國際期刊,3(1),56-75。
  38. 官思伍(2014)。臺北市,臺北科技大學資訊管理研究所。
  39. 許廷祥(2014)。台北市,中國文化大學觀光事業學系研究所。
  40. 陳榮昌,顏嘉玲,江碧珊,張雅筌(2011)。基於情境感知服務的線上訂餐/位系統。第一屆創新發明研討會
  41. 劉純(2001).旅遊心理學.新北市:揚智文化.