Title

改良式遺傳演算法應用於成衣加工裁片搬運距離最小化之研究

Translated Titles

A Study on Minimizing the Moving Distance for Cutting Pieces of Apparel Manufacturing Process with the Improved Genetic Algorithm

DOI

10.6572/JHHE.2(2).8

Authors

林妙姿(Miao-Tzu Lin)

Key Words

成衣 ; 機器佈置 ; 遺傳演算法 ; apparel ; machine layout ; genetic algorithms

PublicationName

餐旅暨家政學刊

Volume or Term/Year and Month of Publication

2卷2期(2005 / 06 / 01)

Page #

289 - 313

Content Language

繁體中文

Chinese Abstract

少量多款的成衣生產趨勢使機器設備及人員常隨之變動,良好的機器佈置環境與物料搬運路線成爲降低生產成本的重要課題,但縫製生產線的機器佈置常由現場主管依經驗直覺人工安排,優劣不易掌控。成衣生產爲有序加工,本研究應用從至圖、先行關係圖與矩陣,計算製程中裁片搬運距離,爲解決因工序數量大而增加有序搜索時間及難度,以改良式遺傳演算法將支線序列模組化,減少有序搜尋組數,結合階層式遺傳演算法及有序遺傳演算法觀念,用控制基因來控制模組基因,使模組基因對應之有序參數基因具有遞增及遞減序列。爲驗證本研究建構之改良式遺傳演算法可快速找到較佳機器佈置排序,本文以成衣廠最常使用之直線型或U型機器佈置,用不同的實例驗證結果,均有效縮短裁片搬運距離,改善效能達一至三成,不僅符合有序加工限制條件,同時具有隨機廣域搜尋及多處同時搜尋最佳解的優點,增加演算效能,縮短裁片搬運距離,提高生產效率。

English Abstract

The tendency of apparel clothes has shifted to the manufacturing of a small amount of a large variety of styles. The machines, equipment and the labor involved have to be adjusted accordingly. While reducing the time spent in moving the cutting pieces, the labor load, as well as the moving distance, we have to also keep in mind the convenience and flexibility of administration. The experience of the administrators of apparel factory is different from person to person whose performance could not be the best. Knowing the manufacturing of apparel is an order-based manufacturing processes, this study proposes the improved genetic algorithm, combined with order-based genetic algorithm and hierarchical genetic algorithm concept. It is control genes to control modular genes and to increase or decrease mapping parametric genes. The improved genetic algorithm in this study accelerate search quickly to get a better machines layout. The actual examples included prove that the application of the improved genetic algorithm helps us to find a better order arrangement of the machines. It not only reduces the moving distance of the cutting pieces, but it increases the manufacturing effects as well.

Topic Category 人文學 > 地理及區域研究
生物農學 > 農產加工
社會科學 > 管理學
Reference
  1. Bragalia, M.(1996).Optimization of a simulated-annealing-based heuristic for single row machine layout problem by Genetic Algorithm.International Transactions in Operation Research,3(1),37-49.
  2. Chan, C.C. Keith,Hui, C.L. Patrick,Yeung, K.W.,Ng, S.F. Frency(1998).Handling the assembly line balancing problem in the clothing industry using a genetic algorithm.International Journal of Clothing Science and Technology,10(1),21-28.
  3. Heragu, S.S.,Kusiak, A.(1988).Machine layout problem in flexible manufacturing systems.Operations Research,36(2),258-268.
  4. Ho, Y.C.,Moodie, C.L.(1998).Machine layout with a linear single-row flow path in an automated manufacturing system.Journal of Manufacturing Systems,17(1),1-22.
  5. Kumar, K.R.,Hadjinicola, G.C.,Lin, T.L.(1995).A heuristic procedure for the sigle-row facility layout problem.European Journal of Operational Research,87(1),65-73.
  6. Kusiak, A.,Heragu, S.S.(1987).The facility layout problem.European Journal of Operational Research,29,229-251.
  7. Man, K.F.,Tang, K.S.,Kwong, S.(2000).Genetic Algorithms.Hong Kong:Springer.
  8. Ponnambalam, S.G.,Ramkumar, V.(2001).A Genetic Algorithm for the design of a single-row layout in automated manufacturing systems.International Journal of Advanced Manufacturing Technology,18(7),512-519.
  9. Sakrker, B.M.,Wilhelm, W.E.,Hogg, G.L.(1998).Locating sets of identical machines in a linear layout.Annals of Operations Research,77,183-207.
  10. 王思穎(2003)。國立成功大學工業管理研究所。
  11. 台灣區製衣工業同業公會編譯(1983)。成衣生產管理。台北:台灣區製衣工業同業公會。
  12. 江衍科(2004)。華梵大學機電工程研究所。
  13. 周鵬程(2002)。遺傳演算法原理與應用。台北:全華科技圖書股份有限公司。
  14. 林妙姿(2003)。應用啓發式搜尋法於成衣工程分析表製程機台分配之研究。紡織中心期刊,13(3),229-239。
  15. 邱明源(1991)。工廠佈置。台北:華泰書局。
  16. 陳文哲、劉樹童(1993)。工廠佈置與物料搬運。台北:中興管理顧問公司。
  17. 陳孟佐(2004)。樹德科技大學資訊管理研究所。
  18. 葉麗芬(2002)。元智大學工業工程與管理研究所。
  19. 蔣天華(2004)。樹德科技大學資訊管理研究所。
  20. 蕭美鈴(1993)。成衣工業學。台北:實踐設計管理學院。