Title

表面週期性結構應用於矽異質結構太陽能電池之研究

Translated Titles

The Study of Utilizing Surface Periodic Structure on Silicon Heterostructure Solar Cells

DOI

10.6342/NTU.2014.00011

Authors

林宏洲

Key Words

一維光柵 ; 電子束微影 ; 矽異質接面太陽能 ; 光捕捉 ; 吸收 ; one-dimensional grating ; ebeam lithography ; Silicon heterojunction solar cell ; light trapping ; absorption

PublicationName

臺灣大學電子工程學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

管傑雄

Content Language

繁體中文

Chinese Abstract

為因應能源危機,近幾年來太陽能電池的技術與轉換效率日益提升,因此各式各樣的太陽能電池也陸續被發表於各大期刊上,然而矽晶圓太陽能電池具有成本較低、產量大及良率較高的優勢,因此在未來十多年內,矽晶元太陽能電池仍是市場上的主流。 本篇論文討論在異質接面太陽能電池表面,利用電子束微影系統(E-beam Lithography)以及反應式離子蝕刻機(Reactive Ion Etch),製作出一維光柵之結構,有效的增加光在矽材料的光路徑,增加入射光的利用,藉此探討不同的週期之一維光柵結構對於太陽能電池的光生電流與外部量子效率(External Quantum Efficiency)之關係。完成一維表光柵結構後,並利用原子力顯微鏡(Atomic force microscope)與聚焦離子束顯微鏡(Focus Ion Beam)確定出一維光柵結構的線寬、深度與週期,且利用Rsoft CAD-Layout Simulation DiffractMOD (RCWA演算法)模擬不同週期之一維光柵結構對於太陽光的反射率及太陽能表面電場強度分布圖,藉此以分析實驗與模擬數據的的關係。 本論文實驗主題可分為四大部分,第一部分為利用電子束微影技術製作出一維表面光柵結構,接著以濺鍍機(Sputter)濺鍍透明導電層薄膜(Transparent Conductive , ITO),並量測其太陽能電池電壓-電流曲線圖和外部量子效率圖。 第二部分則是利用電子束微影系統製作出1.2cm2的一維表面光柵,並量測其反射率,再與未做結構之太陽能電池和Rsoft CAD-Layout Simulation模擬反射率圖形進行比較。 第三部分為以0.15 x 0.15mm2一維表面光柵為基本單位,週期固定於最佳週期800nm,進行縱橫交錯的排列,形成如棋盤狀圖形的排列方式,堆疊成總面積1.05 x 1.05mm2一維表面光柵,我們稱此排列為棋盤狀交錯排列(Chess board ),接著以濺鍍機濺鍍透明導電層薄膜,並量測其太陽能電池電壓-電流曲線圖,由電流增強 幅度可知,棋盤狀交錯排列的一維光柵結構比單一方向的一維光柵結構,所提升的短路電流來的高。 第四部分為Rsoft CAD-Layout Simulation模擬不同週期的反射率,並針對單一波長(λ=550 nm、λ=800 nm與λ=900 nm)於太陽能電池表面附近電場強度圖。 本主題利用一維表面光柵結構與透明導電薄膜的結合,做為抗反射層來提升光生電流與外部量子效率,根據光生電流與外部量子效率的量測,我們證明了在適當的一維表面光柵週期下,對於近紅外光部分,提供了一個有效的光捕捉特性,在波長為700nm至1000nm區間內,每一個光子能產生比純塊材的矽太陽能電池高將近10%的電子。因此藉由在太陽能電池表面製作出一維光柵結構,並結合導電薄膜做為抗反射層的方式,可以有效的提升長波段的外部量子轉換效率,在不改變其磊晶參數情況下,有效的提升光路徑與光生電流。

English Abstract

Cause the energy crisis, the solar photovoltaics(PV) technologies and conversion efficiency have been improved. The PV market is growing ever more noticeable year by year. Every kind of the solar cell are published on Journal or letters. However, crystalline silicon(c-Si)-base solar cell has a lots benefits that is like low cost, high yield quality and mass production. Silicon is the second abundant element on earth. The energy gap for silicon is very suitable to absorb energy in solar spectrum. Next decades, crystalline silicon (c-Si)-base solar cell still is the mainstream in the market. In order to increasing the PV power generation,efficient light trapping has become an important area of research. This study focus on the short current density of the 1D gratings with different period and depth on the heterojuction with intrinsic thin-layer(HIT) solar cell wafer. We use the E-beam lithography to identify the exposure region and use Reactive Ion Etch to fabricate the 1D grating. We confirm the light width and depth by Atomic force microscope and Focus Ion beam. After fabricated process, We measure the IV curve and external quantum efficiency. We find the best 1D grating period is 800nm. And the result shows that the period 800nm grating structure can promote the absorption in wavelength of 0.7-1.1μm. Compare with the flat solar cell, period 800nm grating s increase 14% current density.In addition, we change the arrangement like chessboard lattice and measure the IV curve. We find that the chessboard lattice could be enhanced 17%. By Rsoft CAD-Layout Simulation, we simulate the different period gratings total reflection and inner electric field plot.After simulation, we compare the experiment and the simulation, and so that find that the simulation result almost fit in with experiment data.

Topic Category 電機資訊學院 > 電子工程學研究所
工程學 > 電機工程
Reference
  1. [ 6]Seung-Yoon Lee, Hongsik Choi, Hongmei Li, Kwangsun Ji, Seunghoon Nam,Junghoon Choi, Seh-Won Ahn, Heon-Min Lee, Byungwoo Park, “Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell” Solar Energy Materials and Solar Cells Volume 120, Part A, Pages 412–416, January 2014
    連結:
  2. [ 10] M. Foldyna, L. Yu, and P. Roca i Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. EnergyMater. Sol. Cells., vol. 117, pp. 645– 651, (Oct. 2013)
    連結:
  3. [ 11] J. Kaur Mann, R. Kurstjens, G. Pourtois, M. Gilbert, F. Dross, and J. Poortmans, “Opportunities in nanometer sized Si wires for PV applications,” Progr. Mater. Sci., vol. 58, pp. 1361–1387, (Oct. 2013.)
    連結:
  4. [ 12] I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, “8% Efficient thin-film polycrystalline-silicon solar cells based on aluminuminduced crystallization and thermal CVD,” Progr. Photovolt. Res. Appl., vol. 15, no. 7, pp. 575–586, Nov. 2007.
    連結:
  5. [ 13] A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Expr., vol. 20, no. S2, pp. A224–A244, Mar. 2012
    連結:
  6. [ 14] M. Peters, M. R‥udiger, H. Hauser, M. Hermle, and B. Bl‥asi, “Diffractive gratings for crystalline silicon solar cells—Optimum parameters and loss mechanisms,” Progr. Photovolt. Res. Appl., vol. 20, no. 7, pp. 862–873, 2012.
    連結:
  7. [ 15] Valerie Depauw, Xianqin Meng, Ounsi El Daif, Guillaume Gomard, Lo‥ıc Lalouat, Emmanuel Drouard,” Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals” IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 1, January 2014.
    連結:
  8. [ 17]PV education, absorption coefficient
    連結:
  9. [ 18]Green MA, Keevers MJ. Optical properties of intrinsic silicon at 300 K. Progress in Photovoltaics: Research and Applications. 1995 ;3:189 - 192.
    連結:
  10. [ 20] A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Expr., vol. 20, no. S2, pp. A224–A244, Mar. 2012.
    連結:
  11. [ 21] X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: Design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells, vol. 95, Supplement 1, pp. S32–S38, (May 2011.)
    連結:
  12. [ 22]P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Expr., vol. 15, no. 25, pp. 16986–17000, (Dec. 2007.)
    連結:
  13. [ 23]Tzong-Han Tsai, Yung-Chun Wu , Shih-Sian Yang, and Chun-Hao Chen,” Optimization of Amorphous Si/Crystalline Si Heterojunction Solar Cells by BF2 Ion Implantation”, Japanese Journal of Applied Physics 51 (2012) 04DP07
    連結:
  14. [ 24]Marianne Hiltunen, Esa Heinonen, Jussi Hiltunen, Jarkko Puustinen, Jyrki Lappalainen, and Pentti Karioja, “Nanoimprint Fabrication of Slot Waveguides” , IEEE Photonics Journal , Vol. 5, No. 2,(2013)
    連結:
  15. [ 27]ELS-7500,Elionix Incoporated
    連結:
  16. [ 28]RIE-10NR, Samco Incoporated
    連結:
  17. [ 29]Nova 600i, FEI company
    連結:
  18. [ 31] Piotr Kowalczewski, Marco Liscidini, and Lucio Claudio Andreani, ” Light trapping in thin-film solar cells with randomly rough and hybrid textures.”, Optics Express, Vol. 21, Issue S5, pp. A808-A820 ,(2013)
    連結:
  19. [ 1]經濟部能源局,能源發展綱領
  20. [ 2]NREL,http://www.nrel.gov/solar/
  21. [ 3]Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, Kenta Matsuyama, Yuya Nakamura,Takeshi Nishiwaki,Kazunori Fujita, Eiji Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer” , IEEE JOURNAL OF PHOTOVOLTAICS , VOL. 4, NO. 1, (January 2014)
  22. [ 4]郭浩中,賴芳儀,郭守義,蔡閩安 “太陽能光電技術 Solar Photovoltaics Technologies”,五南圖書股份有限公司
  23. [ 5]楊德仁,”太陽能電池材料”,五南圖書股份有限公司
  24. [ 7]Global Warming Art:Information for potential contributors
  25. [ 8] Jia Zhu, Yi cui,” A solar-cell design based on silicon microwires achieves efficient absorption of sunlight while using only 1% of the active material used in conventional designs.” Nature Materials, VOL 9 , MARCH 2010
  26. [ 9] P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J.Opt., vol. 14, no. 2, pp. 024002-1–024002-11, Feb. 2012.
  27. [ 16]“Handbook of Photovoltaic Science and Engineering” pp.120 , by Antonio Luque (Editor), Steven Hegedus (Editor), Wiley
  28. [ 19]A. Metz, D. Adler, S. Bagus, H. Blanke, M. Bothar, S. Dauwe, K. Dressler, R. Droessler, T. Droste, M. Fiedler, Y. Gassenbauer, Thorsten Grahl, N. Hermert, W. Kuzminski, A. Lachowicz, T. Lauinger, N. Lenck, M. Manole, M. Martini, R. Messmer, C. Meyer, J. Moschner, K. Ramspeck, P.Roth, R. Schoenfelder,B. Schum, J. Sticksel, K.Vaas, and M. Volk, “Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology,” Sol. EnergyMater. Sol. Cells, 2013
  29. [ 25] Michael D. Austin,Haixiong Ge,Wei Wu,Mingtao Li,Zhaoning Yu,D. Wasserman, S. A. Lyon, and Stephen Y. Chou,” Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography” APPLIED PHYSICS LETTERS volume 84, number 26 28, (June. 2004)
  30. [ 30] EQE-D-3015, 光焱科技