Title

準粒子凝聚態在二維系統與自旋有序之應用

Translated Titles

Quasi-particle Condensation in Two-Dimensional System and Its Application in Spin Ordering

DOI

10.6342/NTU201901151

Authors

陳志宇

Key Words

激子 ; 二維半導體 ; 玻色-愛因斯坦凝聚 ; 氧化銅 ; 磁振子 ; 自旋 ; 孤立子 ; exciton ; 2D semiconductor ; Bose-Einstein condensation ; CuO ; magnon ; commensurate-incommensurate phase transition ; soliton

PublicationName

臺灣大學物理學研究所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

博士

Advisor

胡崇德

Content Language

英文

Chinese Abstract

準粒子凝聚態在凝態物理的應用廣泛,在玻色-愛因斯坦凝聚,超導體與超流體中扮演重要角色。本論文主要分為兩部分,第二至第六章討論二維半導體中激子(exciton)的凝聚態,研究顯示一種新的混合態波函數為二維半導體激子凝聚態的基態,並提供可能的實驗量測方式。 第七至第十章研究磁振子(magnon)的凝聚態,組織現有的Schwinger-boson平均場理論,應用於氧化銅材料,以及討論動量非零之玻色-愛因斯坦凝聚態之物理意義與氧化銅中commensurate-incommensurate相變生成之可能之微觀機制。

English Abstract

In this thesis, we study the aspects of quasiparticle condensate phenomena. The Bose-Einstein condensation of quasiparticle plays an important role in many areas such as the superconductivity, superfluidity, magnons, polaritons, and of course, one of the main topic of this thesis-exciton. The exciton condensation of two-dimensional (2D) semiconductors is reports in Ch. 2-6. We start from an effective Hamiltonian of 2D semiconductors and show an interesting mixed state of exciton condensate. The bosonization of electrons can also be a useful mathematical tool to study quantum spin systems. In Ch. 7-10, we extend the Schwinger boson mean field theory (SBMFT) method of ferromagnetic and antiferromagnetic systems. The condensation of Schwinger bosons can describe the ordering phase of spins. We study the commensurate-incommensurate phase transition of CuO as an example.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學研究所
Reference
  1. [1] Introduction to Superconductivity by Michael Tinkham (McGraw Hill; 2nd edition, 1996).
  2. [2] For the books of Bose-Einstein condensation one can refer, for example, Bose-Einstein Condensation and Superfluidity by Lev Pitaevskii, Sandro Stringari (Oxford University Press; 1st edition, 2016) or Bose–Einstein Condensation in Dilute Gases by C.J. Pethick (Cambridge University Press; 2nd edition, 2011).
  3. [3] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell. Science., 198–201, (1995).
  4. [4] W. Kohn and D. Sherrington, Rev. Mod. Phys. 42, 1, (1970).
  5. [5] V. I. Yukalov, Theoret. and Math. Phys., 37:3 (1978), 1093–1101.
  6. [6] Hiroaki T. Ueda and Keisuke Totsuka, Phys. Rev. B 80, 014417 (2009).
  7. [7] J. Hick, F. Sauli, A. Kreisela and P. Kopietz, Eur. Phys. J. B 78, 429-437 (2010).
  8. [8] arXiv: 0904.3889v1 [cond-mat.quant-gas] (2009).
  9. [9] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940)
  10. [10] Massimo Rontani and L.J. Sham, arXiv: 1301.1726 [cond-mat.mes-hall].
  11. [11] Xuejun Zhu, P.B. Littlewood, Mark S. Hybertsen, and T.M. Rice, Phys. Rev. Lett. 74, 1633 (1995).
  12. [12] Massimo Rontani and L.J. Sham, Phys. Rev. B 80, 075309 (2009).
  13. [13] See the relevant reviews of in Bose-Einstein Condensation, edited by A. Griffin, D.W. Snoke, and S. Stringari (Cambridge University Press, Cambridge, 1995). For even more specific reviews, see Bose-Einstein
  14. Condensation of Excitons and Biexcitons: And Coherent Nonlinear Op- tics with Excitons, by S.A. Moskalenko and D.W. Snoke (Cambridge University Press, Cambridge, 2000).
  15. [14] A.N. Kozlov and L.A. Masksimov, Soviet Phys. JETP 21, 790 (1965).
  16. [15] L.V. Keldysh and A.N. Kozlov, Soviet Phys. JETP 27, 521 (1968).
  17. [16] M. Combescot and P. Noisieres, J. Phys C: Solid State Phys, 5, 2369 (1972).
  18. [17] Y. Naveh and B. Laikhtman, Phys. Rev. Lett. 77, 900 (1996).
  19. [18] D.I. Pikulin and T. Hyart, Phys. Rev. Lett. 112, 176403 (2014).
  20. [19] K.S. Novoselov, et al., Science, 306 666 (2004).
  21. [20] C.C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).
  22. [21] Patrick Vogt, et al., Phys. Rev. Lett. 108, 155501 (2012).
  23. [22] C.L. Kane and E.J. Mele, et al., Phys. Rev. Lett. 95, 226801 (2005).
  24. [23] Y. Yao, et al., Phys. Rev. B 75, 041401 (2007).
  25. [24] H. Min, et al., Phys. Rev. B 74, 165310 (2006).
  26. [25] Lev P. Gor’kov and Emmanuel I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
  27. [26] Ke-Chuan Weng and C. D. Hu, Sci. Rep. 6, 29919 (2016).
  28. [27] Cheng-Cheng Liu, Hua Jiang, and Yugui Yao, Phys. Rev. B 84, 195430 (2011).
  29. [28] Stewart E. Barnes, Jun’ichi Ieda, and Sadamichi Maekawa, Sci. Rep. 4, 4105 (2014).
  30. [29] Junsaku Nitta, Tatsushi Akazaki, and Hideaki Takayanagi, Phys. Rev. Lett 78, 1335 (1997).
  31. [30] P. Cudazzo, C. Attaccalite, I.V. Tokatly, A. Rubio, Phys. Rev. Lett 104, 226804 (2010).
  32. [31] Zeyu Jiang, Zhirong, Liu, and Yuanchang Li, Wenhui Duan, Phys. Rev. Lett 118, 266401 (2017).
  33. [32] E. Hanamura and H. Haug, Phys. Rep., 33 209 (1977).
  34. [33] The fact of weaker coupling strength between different bands is obtained as we calculating the V ef f . Coefficients f ’s will show this fact. The cou- pling strength of different bands is proportional to r time f which is about 0.01 times smaller than f.
  35. [34] See the classic book of Schrieffer, Theory of Superconductivity, by J.R. Schrieffer (W. A. Benjamin, Inc., 1964).
  36. [35] D. Jerome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462 (1967).
  37. [36] Basically, the formula of ground state energy can be found in many text- books. For example, Philips L.Taylor and Olle Heinonen: A Quantum Approach to Condensed Matter Physics (Cambridge University Press, Cambridge, 2002).
  38. [37] The integration area in approximation method is a π3 disk while in the numerical method is a 4π2 square.
  39. [38] L.V. Butov and A. I. Filin, Phys. Rev. B 58, 1980 (1998).
  40. [39] S. Yang, et al., Phys. Rev. Lett. 97, 187402 (2006).
  41. [40] P.G. de Gennes, Superconductivity of Metals and Alloys, (New York, 1966).
  42. [41] Monique Combescot, Odile Betbeder-Matibet, and Roland Combescot, Phys. Rev. Lett. 99, 176403 (2007).
  43. [42] Chia-Ren Hu, Phys Rev. Lett 72, 1526 (1994).
  44. [43] S. Asbrink and L-. Norrby, Acta Cryst. (1970) 26, 8.
  45. [44] B. X. Yang, T. R. Thurston, J. M. Tranquada and G. Shirane, Phys. Rev. B 39, 4343 (1989).
  46. [45] P J Brown, T Chattopadhyay, J B Forsyth, V Nunez and F Tasset, J.Phys Condens. Matter 3, 4281.
  47. [46] M. Ain, A Menelle, B M Wanklyn and E P Bertaut, J.Phys Condens. Matter 4, 5327.
  48. [47] T. Kimura, et al. Nature (London) 426, 55 (2003).
  49. [48] Alessio Filippetti and Vincenzo Fiorentini, Phys. Rev. Lett 95, 2086405 (2005).
  50. [49] Gianluca Giovannetti, et al., Phys. Rev. Lett 106, 257601 (2011).
  51. [50] Guang Jin, Kun Gao, Cuang-Can Guo, and Lixin He, Phys. Rev. Lett 108, 187205 (2012).
  52. [51] R. Villarreal et al., arXiv:1205.5299v1, 23 May (2012).
  53. [52] Pierre Toledano et al. Phys. Rev. Lett 106, 026401 (2011).
  54. [53] D.P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).
  55. [54] Sanjoy Sarker, C. Jayaprakash, H. R. Krishnamurthy, Micheal Ma, Phys. Rev. B 40, 5028 (1989).
  56. [55] Condensed Matter Field Theory, 2nd ed. A. Altland and B. Simons, p88.
  57. [56] Ch. Ruegg, N. Cavadini, Furrer A., H.U. Gudel, K. Kramer, H. Matka, A. Wildes, K. Habicht, and P. Vorderwisch. Nature, 423:62-65, (2000).
  58. [57] S.O. Demokritov, V.E. Demidov, D. Dzyapko, G.A. Melkov, A.A. Serga, B. Hilldebrands, and Slavin A.N. Nature, 443:430 433, (2006).
  59. [58] P. Bak and J. von Boehm, Phys. Rev. B 21, 5297 (1980).